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Figure 1: We propose a method that can generate highly detailed high-resolution depth estimations from a single image. Our
method is based on optimizing the performance of a pre-trained network by merging estimations in different resolutions and
different patches to generate a high-resolution estimate. We show our results above using MiDaS [35] in our pipeline.

Abstract

Neural networks have shown great abilities in estimat-
ing depth from a single image. However, the inferred
depth maps are well below one-megapixel resolution and
often lack fine-grained details, which limits their practical-
ity. Our method builds on our analysis on how the input
resolution and the scene structure affects depth estimation
performance. We demonstrate that there is a trade-off be-
tween a consistent scene structure and the high-frequency
details, and merge low- and high-resolution estimations to
take advantage of this duality using a simple depth merg-
ing network. We present a double estimation method that
improves the whole-image depth estimation and a patch se-
lection method that adds local details to the final result.
We demonstrate that by merging estimations at different
resolutions with changing context, we can generate multi-
megapixel depth maps with a high level of detail using a
pre-trained model.

(∗) denotes equal contribution.

1. Introduction

Monocular or single-image depth estimation aims to ex-
tract the structure of the scene from a single image. Un-
like in settings where raw depth information is available
from depth sensors or multi-view data with geometric con-
straints, monocular depth estimation has to rely on high-
level monocular depth cues such as occlusion boundaries
and perspective. Data-driven techniques based on deep neu-
ral networks have thus become the standard solutions in
modern monocular depth estimation methods [11, 13, 14,
15, 29]. Despite recent developments in the field including
in network design [12, 18, 21, 33], incorporation of high-
level constraints [43, 50, 56, 58], and supervision strate-
gies [14, 15, 16, 20, 23], achieving high-resolution depth es-
timates with good boundary accuracy and a consistent scene
structure remains a challenge. State-of-the-art methods are
based on fully-convolutional architectures which in princi-
ple can handle inputs of arbitrary sizes. However, practi-
cal constraints such as available GPU memory, lack of di-
verse high-resolution datasets, and the receptive field size
of CNN’s limit the potential of current methods.



Figure 2: The pipeline of our method: (b) We first start with feeding the image in low- and high-resolution to the network,
here shown results with MiDaS [35], and merge them to get a base estimate with a consistent structure with good boundary
localization. (c) We then determine different patches in the image. We show a subset of selected patches with their depth
estimates. (d) We merge the patch estimates onto our base estimate from (b) to get our final high-resolution result.

We present a method that utilizes a pre-trained monocu-
lar depth estimation model to achieve high-resolution re-
sults with high boundary accuracy. Our main insight
comes from the observation that the output characteristics
of monocular depth estimation networks change with the
resolution of the input image. In low resolutions close to
the training resolution, the estimations have a consistent
structure while lacking high-frequency details. When the
same image is fed to the network in higher resolutions, the
high-frequency details are captured much better while the
structural consistency of the estimate gradually degrades.
We claim following our analysis in Section 3 that this du-
ality stems from the limits in the capacity and the receptive
field size of a given model. We propose a double-estimation
framework that merges two depth estimations for the same
image at different resolutions adaptive to the image content
to generate a result with high-frequency details while main-
taining the structural consistency.

Our second observation is on the relationship between
the output characteristics and the amount and distribution
of high-level depth cues in the input. We demonstrate that
the models start generating structurally inconsistent results
when the depth cues are further apart than the receptive field
size. This means that the right resolution to input the image
to the network changes locally from region to region. We
make use of this observation by selecting patches from the
input image and feeding them to the model in resolutions
adaptive to the local depth cue density. We merge these esti-
mates onto a structurally consistent base estimate to achieve
a highly detailed high-resolution depth estimation.

By exploiting the characteristics of monocular depth es-
timation models, we achieve results that exceed the state-of-
the-art in terms of resolution and boundary accuracy with-
out retraining the original networks. We present our results
and analysis using two state-of-the-art monocular depth es-
timation methods [35, 48]. Our double-estimation frame-
work alone improves the performance considerably without
too much computational overhead while our full pipeline
shown in Figure 2 can generate highly detailed results even
for very complex scenes as Figure 1 demonstrates.

2. Related Work

Early works on monocular depth estimation rely on
hand-crafted features designed to encode pictorial depth
cues such as object size, texture density, or linear per-
spective [37]. Recent works leverage deep neural net-
works to learn depth-related priors directly from training
data [6, 11, 14, 34, 44, 46, 57]. In recent years, impressive
depth estimation performance has been achieved thanks to
the availability of large-scale depth datasets [7, 29, 47, 54]
and several technical breakthroughs including innovative
architecture designs [12, 13, 18, 21, 28, 33], effective in-
corporation of geometric and semantics constraints [4, 43,
50, 52, 55, 56, 58], novel loss functions [26, 29, 35, 44, 48],
and supervision strategies [5, 14, 15, 16, 20, 23, 27, 45, 46].
In this work, rather than developing a new depth estimation
method, we show that by merging estimations from differ-
ent resolutions and patches, existing depth estimation mod-
els can be adapted to generate higher-quality results.

While impressive performance has been achieved across
depth estimation benchmarks, most existing methods are
trained to perform on relatively small input resolution, im-
peding their use in applications for which high-resolution
depth maps are desirable [31, 39, 41, 42]. Several works
propose refinement methods for low-resolution depth esti-
mates using guided upsampling alone [10, 31] or in combi-
nation with residual training [59]. Our approach instead fo-
cuses on generating the high-frequency details by changing
the input of the network and merging multiple estimations.

Our patch-based framework shares similarities with
patch-based image editing, matting, and synthesis tech-
niques where local results are generated from image patches
and blended into global results [9, 22, 49, 51, 53]. While
related, existing patch-based editing techniques are not
directly applicable to our scenario because of problem-
specific challenges in monocular depth estimation. These
challenges include varying range of depth values in patch
estimates, strong dependency on context present in the im-
age patch, and characteristic low-frequency artifacts that
arise in high-resolution depth estimates.



Figure 3: At small input resolutions, the network [35] can estimate the overall structure of the scene successfully but often
misses the details in the image, notice the missing birds in the bottom image. As the resolution gets higher, the performance
around boundaries gets much better. However, the network starts losing the overall structure of the scene and generates
low-frequency artifacts in the estimate. The resolution at which these artifacts start appearing depends on the distribution of
contextual cues in the image.

Figure 4: Since the model is fixed, changing the image reso-
lution affects how much of the scene the receptive field can
“see”. As the resolution increases, depth cues get farther
apart, starving the network of information, which progres-
sively degrades the accuracy.

3. Observations on Model Behavior

Monocular depth estimation, with the lack of geometric
cues that multi-camera systems exploit, has to rely on high-
level depth cues present in the image. In their analysis, Hu
et al. [17] show that monocular depth estimation models
indeed make use of monocular depth cues that the human
visual system utilizes such as occlusions and perspective-
related cues [40] that we will refer to as contextual cues
or more broadly as context. In this section, we present our
observations on how the context or more importantly how
the context density in the input affects the network perfor-
mance. We present examples from MiDaS [35] and show
similar results from [48] in the supplementary material.

Most depth estimation methods follow the common
practice of training with a pre-defined and relatively low
input resolution but the models themselves are fully convo-
lutional, which in principle can handle arbitrary input sizes.
When we feed an image into the same model with different
resolutions, however, we see a specific trend in the result
characteristics. Figure 3 demonstrates that in smaller res-
olutions the estimations lack many high-frequency details
while generating a consistent overall structure of the scene.
As the input resolution gets higher, more details are gen-

Figure 5: The original image with resolution 192 × 192
gains additional details in the depth estimate when fed to
the network after upsampling to 500 × 500 (right) instead
of its original resolution (middle).

erated in the result but we see inconsistencies in the scene
structure characterized by gradual shifts in depth between
image regions. We explain this duality through the limited
capacity and the limited receptive field size of the network.

The receptive field size of a network depends mainly on
the architecture as well as the training resolution. It can be
defined as the region around a pixel that contributes to the
output at that pixel [2, 25]. As monocular depth estima-
tion relies on contextual cues, when these cues in the image
gets further apart than the receptive field, the network is not
able to generate a coherent depth estimation around pixels
that do not receive enough information. We demonstrate
this behavior with a simple scene in Figure 4. MiDaS [35]
with its receptive field size of 384 × 384 starts to gener-
ate inconsistencies between image regions as the input gets
larger and the contextual cues concentrated at the edges of
the image get further apart than 384 pixels. The inconsis-
tent results for the flat wall in Figure 3 (top) also support
this observation.

Convolutional neural networks have an inherently lim-
ited capacity that provides an upper bound to the amount
of information they can store and generate [3]. As the net-
work can only see as much as its receptive field size at once,
the limit in capacity applies to what the network can gener-
ate inside its receptive field. We attribute the lack of high-



frequency details in low-resolution estimates to this limit.
When there are many contextual cues present in the input,
the network is able to reason about the larger structures in
the scene much better and is hence able to generate a con-
sistent structure. However, this results in the network not
being able to generate high-frequency details at the same
time due to the limited amount of information that can be
generated in a single forward pass. We show a simple ex-
periment in Figure 5. We use an original input image of
192× 192 pixels and simply upsample it to generate higher
resolution results. This way, the amount of high-frequency
information remains the same in the input but we still see an
increase in the high-resolution details in the result, demon-
strating a limit in the network capacity. We hence claim that
the network gets overwhelmed with the amount of contex-
tual cues concentrated in a small image and is only able to
generate an overall structure of the scene.

4. Method Preliminaries
Following our observations in Section 3, our goal is to

generate multiple depth estimations of a single image to be
merged to achieve a result that has high-frequency details
with a consistent overall structure. This requires (i) retriev-
ing the distribution of contextual cues in the image that we
will use to determine the inputs to the network, and (ii)
a merging operation to transfer the high-frequency details
from one estimate to another with structural consistency.
Before going into the details of our pipeline in Sections 5
and 6, we present our approach to these preliminaries.

Estimating Contextual Cues Determining the contextual
cues in the image is not a straightforward task. Hu et al. [17]
focus on this problem by identifying the most relevant pix-
els for monocular depth estimation in an image. While they
provide a comparative analysis of contextual cues used by
different models during inference, we were not able to gen-
erate high-resolution estimates we need for cue distribution
for MiDaS [35] using their method. Instead, following their
observation that image edges are reasonably correlated with
the contextual cues, we use an approximate edge map of
the image obtained by thresholding the RGB gradients as a
proxy.

Merging Monocular Depth Estimates In our problem
formulation, we have two depth estimations that we would
like to merge: (i) a low-resolution map obtained with a
smaller-resolution input to the network and (ii) a higher-
resolution depth map of the same image (Sec. 5) or patch
(Sec. 6) that has better accuracy around depth discontinu-
ities but suffers from low-frequency artifacts. Our goal is to
embed the high-frequency details of the second input into
the first input which provides a consistent structure and a
fixed range of depths for the full image.

While this problem resembles gradient transfer methods
such as Poisson blending [32], due to the low-frequency ar-
tifacts in the high-resolution estimate, such low-level ap-
proaches do not perform well for our purposes. Instead,
we utilize a standard network and adopt the Pix2Pix ar-
chitecture [19] with a 10-layer U-net [36] as the genera-
tor. Our selection of a 10-layer U-net instead of the de-
fault 6-layer aims to increase the training and inference res-
olution to 1024 × 1024, as we will use this merging net-
work for a wide range of input resolutions. We train the
network to transfer the fine-grained details from the high-
resolution input to the low-resolution input. For this pur-
pose, we generate input/output pairs by choosing patches
from depth estimates of a selected set of images from Mid-
dlebury2014 [38] and Ibims-1 [24]. While creating the low-
and high-resolution inputs is not a problem, consistent and
high-resolution ground truth cannot be generated natively.
Note that we also can not directly make use of the original
ground-truth data because we are training the network only
for the low-level merging operation and the desired output
depends on the range of depth values in the low-resolution
estimate. Instead, we empirically pick 672*672 pixels as in-
put resolution to the network which maximizes the number
of artifact-free estimations we can obtain over both datasets.
To ensure that the ground truth and higher-resolution patch
estimation have the same amount of fine-grained details,
we apply a guided filter on the patch estimation using the
ground truth estimation as guidance. These modified high-
resolution patches serve as proxy ground truth for a seam-
lessly merged version of low- and high-resolution estima-
tions. Figures 6 and 7 demonstrate our merging operation.

5. Double Estimation
We show the trade-off between a consistent scene struc-

ture and the high-frequency details in the estimates in Sec-
tion 3 and Figure 3 with changing input resolution. We also
show in Figures 3 and 4 that the network starts to produce
structurally inconsistent results when the contextual cues in
the image are further apart than the receptive field size. The
maximum resolution at which the network will be able to
generate a consistent structure depends on the distribution
of the contextual cues in the image. Using an edge map as
the proxy for contextual cues, we can determine this maxi-
mum resolution by making sure that no pixel is further apart
from contextual cues than half of the receptive field size.
For this purpose, we apply binary dilation to the edge map
with a receptive-field-sized kernel in different resolutions.
Then, the resolution for which the dilated edge map stops
to produce all-one results is the maximum resolution where
every pixel will receive context information in a forward
pass. We refer to this resolution that is adaptive to the im-
age content as R0. We will refer to resolutions above R0

as Rx where x represents the percentage of pixels that do



Figure 6: We show the depth estimates obtained at different resolutions, (a) at the training resolution of MiDaS [35] at
384× 384, (b) at the selected resolution with edges separated at most by 384 pixels, and (c) at a higher resolution that leaves
20% of the pixels without nearby edges. Although the increasing resolution provides sharper results, beyond (c), the estimates
become unstable in terms of the overall structure, visible through incorrect depth range for the bench in the background and
unrealistic depth gradients around the tires. (d) Our merging network is able to fuse the fine-grain details in (c) into the
consistent structure in (a) to get the best of two worlds.

not receive any contextual information at a given resolution.
Estimations with resolutions above R0 will lose structural
consistency but they will have richer high-frequency con-
tent in the result.

Following these observations, we propose an algorithm
that we call double estimation: to get the best of two worlds,
we feed the image to the network in two different resolu-
tions and merge the estimates to get a consistent result with
high-frequency details. Our low-resolution estimation is set
to the receptive field size of the network that will determine
the overall structure in the image. Resolutions below the
receptive field size do not improve the structure and in fact
reduce the performance as the full capacity of the network
is not utilized. We determined through experimental analy-
sis in Section 7.2 that our merging network can successfully
merge the high-frequency details onto the low-resolution es-
timate’s structure up toR20. The low-resolution artifacts in
estimations beyondR20 start to damage the merged results.
Note thatR20 may be higher than the original resolution.

Figure 6 demonstrates that we can preserve the structure
in the low-resolution estimation (a) while integrating the de-
tails in the high-resolution estimation (c) successfully into
our result (d). Through merging, we can generate consis-
tent results beyond R0 (b), which is the limit set by the
receptive field size of the network, at the cost of a second
forward-pass through the base network.

6. Patch Estimates for Local Boosting
We determine the estimation resolution for the whole im-

age based on the number of pixels that do not have any
contextual cues nearby. These regions with the lowest con-
textual cue density are dictating the maximum resolution

we can use for an image. Regions with higher contex-
tual cue density, however, would still benefit from higher-
resolution estimations to generate more high-frequency de-
tails. We present a patch-selection method to generate depth
estimates at different resolutions for different regions in the
image that are merged together for a consistent full result.

Ideally, the patch selection process should be guided
with high-level information that determines the local res-
olution optimum for estimation. This requires a data-driven
approach that can evaluate the high-resolution performance
of the network and an accurate high-resolution estimation
of the contextual cues. However, the resolution of the cur-
rently available datasets are not enough to train such a sys-
tem. As a result, we present a simple patch selection method
where we make cautious design decisions to arrive at a re-
liable high-resolution depth estimation pipeline without re-
quiring an additional dataset or training.

Base estimate We first generate a base estimate using the
double estimation in Section 5 for the whole image. The
resolution of this base estimate is fixed asR20 for most im-
ages. Only for a subset of images we increase this resolution
as detailed at the end of this section.

Patch selection We start the patch selection process by
tiling the image at the base resolution with a tile size equal
to the receptive field size and a 1/3 overlap. Each of these
tiles serves as a candidate patch. We ensure each patch re-
ceives enough context to generate meaningful depth esti-
mates by comparing the density of the edges in the patch to
the density of the edges in the whole image. If a tile has less
edge density than the image, it is discarded. If a tile has a



Figure 7: Input patches are shown in our base estimate,
patch-estimate pasted onto the base estimate, and our result
after merging. The image is picked from [8].

higher edge density, the size of the patch is increased until
the edge density matches the original image. This makes
sure that each patch estimate has a stable structure.

Patch estimates We generate depth estimates for patches
using another double estimation scheme. Since the patches
are selected with respect to the edge density, we do not ad-
just the estimation resolution further. Instead, we fix the
high-resolution estimation size to double the receptive field
size. The generated patch-estimates are then merged onto
this base estimate one by one to generate a more detailed
depth map as shown in Figure 2. Note that the range of
depth values in the patch estimates differs from the base es-
timate since monocular depth estimation networks do not
provide a metric depth. Rather their results represent the or-
dinal depth relationship between image regions. Our merg-
ing network is designed to handle such challenges and can
successfully merge the high-frequency details in the patch
estimate onto the base estimate as Figure 7 shows.

Base resolution adjustment We observe that when the
edge density in the image varies a lot, especially when a
large portion of the image lacks any edges, our patch selec-
tion process ends up selecting too small patches due to the
small R20. We solve this issue for such cases by upsam-
pling the base estimate to a higher resolution before patch
selection. For this, we first determine a maximum base size
Rmax = 3000×3000 from theR20 value of a 36-megapixel
outdoors image with a lot of high-frequency content. Then
we define a simple multiplier for the base estimate size as
max (1,Rmax/(4KR20)) whereK is the percentage of pix-
els in the image that are close to edges determined by di-
lating the edge map with a kernel of quarter of the size of
the receptive field. The max operation makes sure that we
never decrease the base size. This multiplier makes sure
that we can select small high-density areas within an over-
all low-density image with small patches when we define
the minimum patch size as the receptive field size in the
base resolution.

7. Results and Discussion

We evaluate our method on two different datasets, Mid-
dleburry 2014 [38] for which high-resolution inputs and
ground-truth depth maps are available, and IBMS-1 [24].
We evaluate using a set of standard depth evaluation metrics
as suggested in recent work [35, 48], including root mean
squared error in disparity space (RMSE), percentage of pix-
els with δ = max( zi

z∗
i
,
z∗
i

zi
) > 1.25 (δ1.25), and ordinal error

(ORD) from [48] in depth space. Additionally, we propose
a variation of ordinal relation error [48] that we call depth
discontinuity disagreement ratio (D3R) to measure the qual-
ity of high frequencies in depth estimates. Instead of using
random points as in [48] for ordinal comparison, we use the
centers of superpixels [1] computed using the ground truth
depth and compare neighboring superpixel centroids across
depth discontinuities. This metric hence focuses on bound-
ary accuracy. We provide a more detailed description of our
metric in the supplementary material.

Our merging network is light-weight and the time it takes
to do a forward pass is magnitudes smaller than the monoc-
ular depth estimation networks. The running time of our
method mainly depends on how many times we use the base
network in our pipeline. The resolution at which the base
estimation is computed,R20, and the number of patches we
merge onto the base estimate is adaptive to the image con-
tent. Our method ended up selecting 74.82 patches per im-
age on average with an averageR20 = 2145× 1501 for the
Middleburry 2014 [38] dataset and 12.17 patches per image
with an averageR20 = 1443× 1082 for IBMS-1 [24]. The
difference between these numbers comes from the different
scene structures present in the two datasets. Also note that
the original image resolution of IBMS-1 [24] is 640× 480.
As we demonstrate in Section 3, upscaling low-resolution
images does help in generating more high-frequency de-
tails. Hence, our estimation resolution depends mainly on
the image content and not on the original input resolution.

7.1. Boosting Monocular Depth Estimation Models

We evaluate how much our method can improve upon
pre-trained monocular depth estimation models using Mi-
DaS [35] and SGR [48] as well as the depth refinement
method by Niklaus et al. [31] and a baseline where we
refine the original method’s results using a bilateral fil-
ter after bilinear upsampling. The quantitative results in
Table 1 show that for the majority of the metrics, our
full pipeline improves the numerical performance consider-
ably and our double-estimation method already provides a
good improvement at a small computational overhead. Our
content-adaptive boosting framework consistently improves
the depth estimation accuracy over the baselines on both
datasets in terms of ORD and D3R metrics, indicating ac-
curate depth ordering and better-preserved boundaries. Our



Table 1: Quantitative evaluation of our method using two base networks on two different datasets. Lower is better.

Middleburry2014[38] Ibims-1 [24]

MiDaS [35] SGR [48] MiDaS [35] SGR [48]

ORD D3R RMSE δ1.25 ORD D3R RMSE δ1.25 ORD D3R RMSE δ1.25 ORD D3R RMSE δ1.25

Original Method 0.3840 0.3343 0.1708 0.7649 0.4087 0.3889 0.2123 0.7989 0.4002 0.3698 0.1596 0.6345 0.5555 0.4736 0.1956 0.7513

Refine-Bilateral 0.3806 0.3366 0.1707 0.7627 0.4078 0.3904 0.2122 0.7990 0.3982 0.3768 0.1596 0.6350 0.5551 0.4750 0.1956 0.7501

Refine-with [31] 0.3826 0.3377 0.1704 0.7622 0.4081 0.3880 0.2115 0.7993 0.4006 0.3761 0.1600 0.6351 0.5488 0.4780 0.1953 0.7482

Single-est (R0) 0.3554 0.2504 0.1481 0.7161 0.4312 0.3131 0.1999 0.7841 0.4504 0.3269 0.1687 0.6633 0.6343 0.4901 0.2146 0.7856

Double-est (R20) 0.3496 0.1709 0.1563 0.7364 0.3944 0.2540 0.1983 0.7931 0.4112 0.3272 0.1597 0.6386 0.5591 0.4829 0.1967 0.7473

OURS 0.3467 0.1578 0.1557 0.7406 0.3879 0.2324 0.1973 0.7891 0.3938 0.3222 0.1598 0.6390 0.5538 0.4671 0.1965 0.7460

Input MiDaS [35] Ours using MiDaS SGR [48] Ours using SGR

Figure 8: Additional results using MiDaS [35] and the Structure-Guided Ranking Loss method [48] compared to the original
methods run at their default size.

method also performs comparably in terms of RMSE and
δ1.25. We also observe that simply adjusting the input res-
olution adaptively toR0 meaningfully increases the perfor-
mance.

The performance improvement provided by our method
is much more significant in qualitative comparisons shown
in Figure 8. We can drastically increase the number of high-
frequency details and the boundary localization when com-
pared to the original networks.

We do not see a large improvement when depth refine-
ment methods are used in Table 1 and also in the qualitative
examples in Figure 9. This difference comes from the fact

that we utilize the network multiple times to generate richer
information while the refinement methods are limited by the
details available in the base estimation results. Qualitative
examples show that the refinement methods are not able to
generate additional details that were missed in the base es-
timate such as small objects or sharp depth discontinuities.

7.2. Double Estimation and Rx

We chose R20 as the high-resolution estimation in our
double-estimation framework. This number is chosen based
on the quantitative results in Table 2, where we show that
using a higher resolution R30 results in a decrease in per-



Input MiDaS [35] MiDaS + Bilat. Up. MiDaS + [31] Ours using MiDaS GT

Figure 9: We compare out method to bilateral upsampling and the refinement method proposed by Niklaus et al. [31] as
applied to MiDaS [35] output. Refinement methods fail to add any details that do not exist in the original estimation. With
our patch-based merging framework, we are able to generate sharp details in the image.

Table 2: Whole image estimation performance of Mi-
DaS [35] with changing resolution and double estimation
on the Middlebury dataset [38]. Lower is better.

Single estimation Double estimation

Fixed size (pixels) Context-adaptive

384 768 1152 1536 R0 R10 R20 R0 R10 R20 R30

ORD 0.384 0.371 0.426 0.478 0.355 0.457 0.505 0.361 0.349 0.349 0.352

D3R 0.334 0.217 0.187 0.189 0.250 0.197 0.199 0.258 0.183 0.170 0.171

RMSE 0.170 0.152 0.165 0.186 0.148 0.183 0.198 0.164 0.157 0.156 0.156

δ1.25 0.764 0.745 0.740 0.793 0.716 0.788 0.803 0.749 0.730 0.736 0.745

formance. This is due to the high-resolution results having
heavy artifacts as the number of pixels in the image without
contextual information increases. Table 2 also demonstrates
that our double estimation framework outperforms fixed in-
put resolutions which are the common practice, as well as
estimations at R0 which represents the maximum resolu-
tion an image can be fed to the networks without creating
structural inconsistencies.

7.3. Limitations

Since our method is built upon monocular depth estima-
tion, it suffers from its inherent limitations and therefore
generates relative, ordinal depth estimates but not absolute
depth values. We also observed that the performance of the
base models degrade with noise and our method is not able
to provide meaningful improvement for noisy images. We
address this in an analysis on the NYUv2 [30] dataset in
the supplementary material. The high-frequency estimates
suffer from low-magnitude white noise which is not always
filtered out by our merging network and may result in flat
surfaces appearing noisy in our results.

We utilize RGB edges as a proxy for monocular depth
cues and make some ad-hoc choices in our patch selection
process. While we are able to significantly boost base mod-

Figure 10: Our boundary accuracy is better visible in this
example where we apply a threshold to the estimated depth
values of MiDaS [35] (a) and ours (b).

els with our current formulation, we believe research on
contextual cues and the patch selection process will be ben-
eficial to reach the full potential of pre-trained monocular
depth estimation networks.

8. Conclusion
We have demonstrated an algorithm to infer a high-

resolution depth map from a single image using pre-trained
models. While previous work is limited to sub-megapixel
resolutions, our technique can process the multi-megapixel
images captured by modern cameras. High-quality high-
resolution monocular depth estimation enables many appli-
cation scenarios such as image segmentation. We show a
simple segmentation by thresholding the depth values in
Figure 10 which also demonstrates our boundary localiza-
tion. Our work is based on a careful characterization of the
abilities of existing depth-estimation networks and the fac-
tors that influence them. We hope that our approach will
stimulate more work on high-resolution depth estimation
and pave the way for compelling applications.
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and Tim Fingscheidt. Self-supervised monocular depth es-
timation: Solving the dynamic object problem by semantic
guidance. In Proc. ECCV, 2020.

[24] Tobias Koch, Lukas Liebel, Friedrich Fraundorfer, and
Marco Körner. Evaluation of CNN-Based Single-Image
Depth Estimation Methods. In Proc. ECCV Workshops,
2018.

[25] Hung Le and Ali Borji. What are the receptive, effective
receptive, and projective fields of neurons in convolutional
neural networks? arXiv:1705.07049 [cs.CV],
2017.

[26] Jae-Han Lee and Chang-Su Kim. Multi-loss rebalancing al-
gorithm for monocular depth estimation. In Proc. ECCV,
2020.

[27] Hanhan Li, Ariel Gordon, Hang Zhao, Vincent Casser, and
Anelia Angelova. Unsupervised monocular depth learning
in dynamic scenes. Proc. CoRL, 2020.

[28] Jun Li, Reinhard Klein, and Angela Yao. A two-streamed
network for estimating fine-scaled depth maps from single
rgb images. In Proc. ICCV, 2017.

[29] Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In Proc. CVPR,
2018.

[30] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob
Fergus. Indoor segmentation and support inference from
RGBD images. In Proc. ECCV, 2012.

[31] Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3D
Ken Burns effect from a single image. ACM Trans. Graph.,
38(6):1–15, 2019.
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