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Due to the widespread use of compositing in contemporary feature films,
green-screen keying has become an essential part of post-production work-
flows. To comply with the ever-increasing quality requirements of the in-
dustry, specialized compositing artists spend countless hours using multi-
ple commercial software tools, while eventually having to resort to manual
painting because of the many shortcomings of these tools. Due to the sheer
amount of manual labor involved in the process, new green-screen keying
approaches that produce better keying results with less user interaction are
welcome additions to the compositing artist’s arsenal. We found that —
contrary to the common belief in the research community — production-
quality green-screen keying is still an unresolved problem with its unique
challenges. In this paper, we propose a novel green-screen keying method
utilizing a new energy minimization-based color unmixing algorithm. We
present comprehensive comparisons with commercial software packages
and relevant methods in literature, which show that the quality of our re-
sults is superior to any other currently available green-screen keying solu-
tion. Importantly, using the proposed method, these high-quality results can
be generated using only one-tenth of the manual editing time that a pro-
fessional compositing artist requires to process the same content having all
previous state-of-the-art tools at his disposal.

Categories and Subject Descriptors: I.3.8 [Computer Graphics]: Applica-
tions; I.4.6 [Image Processing and Computer Vision]: Segmentation—
Pixel classification; I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Color

Additional Key Words and Phrases: green-screen keying, image matting,
soft segmentation, interactive segmentation
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1. INTRODUCTION

As computer-generated imagery became convincingly realistic,
compositing synthetic backgrounds and objects into live-action
shots became a common practice in feature film production. The
widespread use of composite shots over pure live-action is often
motivated by the higher degree of artistic control over the final shot,
as well as the potential to reduce production costs. Usually, the first
step in a digital compositing workflow is the performance capture
of the actors and various other live-action elements against a con-
trolled — typically green — background. Then, in post-production,
one needs to obtain RGBA foreground layers corresponding to the
live-action elements that ideally carry no trace of the green-screen
background. This process is often referred to as keying. Finally, one
or more foreground layers are combined with the desired computer
generated scene elements to obtain the composite shot.

Keying is a crucial intermediate step in any compositing work-
flow, as later in the workflow seamless blending between the syn-
thetic and live-action elements is highly dependent on obtaining
high-quality keying results. The keying process usually starts with
the compositing artist obtaining preliminary foreground layers by
using multiple software tools in concert, some of the most popu-
lar ones being The Foundry’s Keylight, Nuke’s Image Based Keyer
(IBK) and Red Giant’s Primatte. Often, this first step already in-
volves significant manual labor in the form of parameter tweaking
or drawing roto-masks. Ideally, the preliminary foreground layers
would already be sufficiently high quality so that one can move on
to consecutive steps in the compositing pipeline. Unfortunately, this
is rarely the case in practice and the imperfections in the foreground
layer still have to be corrected by manual painting before mov-
ing forward. In professional circles, the combined manual work re-
quired for both obtaining preliminary keying results and later their
refinement by manual painting is recognized as a significant bottle-
neck in post-production.

While the shortcomings of the currently available keying tools
are well-known in the industry, the focus of relevant academic re-
search is almost exclusively on the related natural matting prob-
lem. An important distinction between natural matting and keying
is in their end goals. While the end result of the keying process
is one or more RGBA foreground layers with both correct colors
and precise alpha maps, natural matting methods very often solely
focus on the extraction of alpha maps. In fact, the widely used nat-
ural matting benchmark [Rhemann et al. 2009] evaluates perfor-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



2 • Y. Aksoy et al.

(a) (b) (c) (d) (e) (f)

Fig. 1. Major steps of our method. First, parameters of a global color model are obtained from a key frame via a simple scribble interface (a) (Section 4.1).
For a different query frame (b), the global color model is refined into local color models (c) (Section 4.2) which are utilized for extracting multiple color layers
via color unmixing (d) (Section 3). A subset of layers is then combined to get the final keying result (e). The layers can be used for compositing as well as
color editing (f).

Fig. 2. High-quality alpha maps do not necessarily result in high-quality
foreground layers for keying. While both alpha maps capture the intricate
details of the actor’s hair, the foreground layer computed by comprehensive
sampling [Shahrian et al. 2013] (left) has noticeable color artifacts, while
the foreground layer computed by our method has the correct colors.

mance based only on alpha masks and not foreground layer colors.
Figure 2 shows two seemingly high-quality alpha maps with sig-
nificantly different corresponding foreground layers: while one is
almost perfect, the other has significant color artifacts. In fact, our
experiments with the state-of-the-art natural matting methods show
that their performance in the alpha matting benchmark does not
necessarily carry over to green-screen keying challenges.

The feedback we collected from industry professionals as well
as our own experience showed that commercial software tools have
difficulties dealing with image regions where the colors of multi-
ple objects mix, either due to motion blur, intricate object bound-
aries (e.g. hair), or color spill (color cast due to indirect illumina-
tion from green-screen). Influenced by this observation, we pro-
pose a novel energy function for solving the fundamental problem
of unmixing a color mixture, i.e. computing both the individual un-
derlying colors as well as their mixing ratios (alpha values). We
efficiently minimize this energy function by utilizing priors for the
underlying colors in the mixture, which are obtained and refined
through a two-step user interaction. We demonstrate the applica-
tion of our color unmixing framework to green-screen keying. In
a comprehensive set of quantitative and qualitative evaluations uti-
lizing a paid compositing artist, we show that our method consis-
tently outperforms both the current commercial software tools and
the state-of-the-art natural matting methods in the domain of green-
screen keying. Importantly, the superior results of our technique
can be obtained on average by using only one-tenth of the manual
interaction time required by a trained artist for processing the same
content with the current state-of-the-art tools. Major steps of our
pipeline can be seen in Figure 1.

2. RELATED WORK

Green/Blue screen keying has received little attention in the re-
search community. In order to solve the under-constrained keying
problem, Smith and Blinn [1996] and Grundhöfer et al. [2010] pro-
posed methods that capture the same foreground with two different
backgrounds, providing additional equations to the linear system.
A radiometric compensation method was proposed by Grundhöfer
and Bimber [2008] in order to solve the problem also against ar-
bitrary backgrounds. However, these methods require specialized
setups which limit their practical use. Our method, in comparison,
requires a regular video stream shot against only a single back-
ground. Thus, its practical use is similar to commercial keying soft-
ware such as Keylight, IBK or Primatte.

Commercial keying tools often use chroma-based or luma-based
algorithms. In feature film post-production, these tools are oper-
ated by specialized compositing artists for obtaining a preliminary
keying result. Preliminary results often require further manual pro-
cessing, because, despite the parameter tweaking and the usage of
roto-masks, they often fall short of the quality level demanded in
professional productions. Figure 10 shows various examples where
a trained artist simply cannot achieve production-level quality due
to the various limitations of currently available tools. Since such
keying results are unacceptable in professional production, the pre-
liminary keying results undergo an extremely tedious manual paint-
ing process, where each pixel in the video is cleaned off of keying
errors by hand.

Natural alpha matting methods are generally classified as
sampling- or propagation-based. Local propagation-based methods
[Sun et al. 2004; Levin et al. 2008a; Levin et al. 2008b; Singaraju
et al. 2009] typically rely on the assumption that there is a smooth
transition between foreground and background layers and solve
the matting problem by identifying these transitions. The matting
Laplacian introduced by Levin et al. [2008a] has been employed or
improved by numerous methods [Singaraju et al. 2009; Gastal and
Oliveira 2010] and applied to multiple layers [Singaraju and Vidal
2011]. Non-local propagation-based methods [Lee and Wu 2011;
He et al. 2013; Shi et al. 2013; Chen et al. 2013] make use of the
non-local principle introduced by Lee and Wu [2011].

Sampling-based methods can be divided into parametric and
non-parametric ones. Non-parametric sampling-based methods [He
et al. 2011; Shahrian and Rajan 2012; Shahrian et al. 2013; John-
son et al. 2014] propose strategies to effectively select many sam-
ples from foreground and background, and conduct matting by find-
ing foreground-background sample pairs that can represent an ob-
served mixed pixel by their weighted sum. Parametric sampling-
based methods [Ruzon and Tomasi 2000; Chuang et al. 2001; Wang
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and Cohen 2005] estimate a color distribution for each pixel using
nearby known pixels and solve the matting problem accordingly.
The soft segmentation method proposed by Tai et al. [2007] also
utilizes a parametric representation of the colors in an image.

Other methods combine propagation and sample-based ap-
proaches [Wang and Cohen 2007; Rhemann et al. 2008; Chen et al.
2013; Jin et al. 2014] and pose an energy minimization problem
using the possible samples as unary energy component and alpha-
based propagation term as smoothness. Our formulation is also
based on energy minimization while we only use the appearance
of a pixel without any propagation.

In literature, the matting Laplacian utilized by [Levin et al.
2008a; Gastal and Oliveira 2010] among others, has been criti-
cized for having overly strong regularization [Lee and Wu 2011]
and to create unnecessary ambiguities [Singaraju et al. 2009]. In-
put in the form of trimaps, which is needed for methods such as
[Ruzon and Tomasi 2000; Chuang et al. 2001; Gastal and Oliveira
2010] among others, has been said not to have direct influence on
the result [Levin et al. 2008a], making users unable to predict or
reiterate the results without actually running the algorithm every
time, or to be very time-consuming to be practical [Wang and Co-
hen 2005]. In contrast, our method is parametric, but it does not
rely on propagation or automated sampling. We obtain our model
parameters directly through a two-step user interaction scheme. In
the first step, the user identifies an arbitrary number of dominant
colors in the scene that are used to build a global color model (Sec-
tion 4.1), which can be locally refined further in a second user in-
teraction step (Section 4.2).

Video matting methods are often extensions of their image mat-
ting counterparts. While some methods use propagated or edited
trimaps for each frame and apply image matting methods directly
[Chuang et al. 2002; Li et al. 2005; Bai et al. 2011; Tang et al.
2012; Fan et al. 2012], others apply consistency constraints or sam-
pling strategies in video volume instead of image plane [Wang et al.
2005; Bai et al. 2009; Choi et al. 2012; Zhong et al. 2012; Li et al.
2013; Shahrian et al. 2014].

Matting for specialized applications involves making specific
assumptions or utilizing additional user input. For example, shadow
matting allows specific assumptions on appearance and the method
proposed by Wu et al. [2007] outperforms natural matting meth-
ods in this application. Similarly, motion-blurred objects can be
extracted more precisely when user-guided motion vectors are uti-
lized [Lin et al. 2011]. Extracting smooth transparent layers has
also been studied [Yeung et al. 2008] which can also be applied
to shadow removal. The downside of these methods is their rather
limited applications, as they do not generalize beyond the specific
sub-problems they focus on.

Color unmixing is an interesting problem for a wider range of
applications. Using an image formation model, Carroll et al. [2011]
propose illumination decomposition for material recoloring. For
effective image-based rendering in the presence of reflective sur-
faces, Sinha et al. [2012] decomposes the scene into reflected and
transmitted surfaces. Shih et al. [2015] remove reflections from
glass windows using an attenuation model for ghosting cues. De-
spite sharing the common high-level goal of unmixing scene col-
ors, these methods are designed for substantially different use cases
than green-screen keying, which is our main focus in this work.

3. COLOR UNMIXING

The central component of our method is an energy minimization
framework, where the color c of a pixel is hypothesized to be a
mixture of a number of underlying colors ui. The problem solved

by our framework is the estimation of the underlying colors and
their mixing ratios (αi), such that the linear combination of the un-
derlying colors weighted by corresponding mixing ratios gives the
original pixel color c. To that end, we build and utilize a parametric
representation of all the colors present in the scene which we refer
simply as the color model. The color model comprises N distribu-
tions in RGB space. Both the number and the parameters of these
distributions are obtained through user interaction. We assume that
the color model for an input scene is already known to us through-
out this section, and rather focus on the formulation and efficient
solution of the color unmixing problem. A detailed discussion on
building the color model of an input scene will follow in Section 4.

We start formulating our color unmixing framework by defining
three basic constraints that each pixel should satisfy: (i) an alpha
constraint which states that the alpha values αi should sum up to
unity, (ii) a color constraint which states that we should obtain the
original color c of the pixel when we mix the underlying colors ui

using the corresponding alpha values, and (iii) a box constraint that
limits the space of possible alpha and color values. Formally, we
express these constraints as follows:∑

i

αi = 1,
∑
i

αiui = c, and αi,ui ∈ [0, 1]. (1)

The cost associated with the occurrence of an underlying color ui

in a mixture c is defined by how well it fits to the corresponding
distributionN (µi,Σi), where µ and Σ denote the mean vector and
the covariance matrix, andN is the normal distribution. We use the
squared Mahalanobis distance as our measure of goodness of fit:

Di(u) = (u− µi)TΣ−1
i (u− µi), (2)

and define our energy function F of selecting a particular mixture
of N underlying colors accordingly as follows:

F =
∑
i

αiDi(ui). (3)

This energy function favors layer colors that have the best likeli-
hoods according to their corresponding color distributions, espe-
cially for the layers with higher alpha values. Minimization of this
energy subjected to the color constraint makes sure that the resul-
tant layers successfully represent the color mixture that formed the
observed pixel color.

While the energy function F may seem straightforward, we
found that its minimization is non-trivial. Since the energy func-
tion F and the color constraint defined in Equation 1 are nonlinear,
we are faced with a nonlinearly constrained nonlinear optimization
problem. Specifically, the color constraint in Equation 1 constrains
a single alpha value for three underlying color channels at once.
This makes our energy function F prone to get stuck in local min-
ima within the vicinity of the initial point if the constraints are en-
forced from the start. What we need instead is an algorithm that
strictly enforces the constraints only after allowing to find some
reasonable alpha and color values first. To that end, we utilize the
method referred as the original method of multipliers [Bertsekas
1982]. We express the deviation from the constraints in Equation 1
as:

Gα =

(∑
i

αi − 1

)2

and Gu =

(∑
i

(αiui)− c

)•2
, (4)

where (·)•2 denotes the elementwise squaring operation. This leads
to the constraint vector G =

[
GTu Gα

]T . The vector containing the
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variables x that are the arguments of the optimization is:

x =
[
α1 . . . αN uT1 . . . uTN

]T
. (5)

Note that x contains the variables for unmixing a single pixel. The
optimization is performed independently for every pixel, where for
each pixel we solve for both the alpha values and the underlying
colors simultaneously. Further details of our optimization proce-
dure are discussed in Section 3.1.

Once x is computed for all pixels of an input video frame, for
each pixel we obtain N underlying colors and corresponding alpha
values. If we visualize the ith underlying color for all pixels of
the video frame with their alpha values, we obtain the RGBA layer
corresponding to the distribution N (µi,Σi). Green-screen keying
can be seen as a special case where we remove the RGBA layer
corresponding to the green-screen background.

In contrast to our color unmixing method, related works on para-
metric natural matting use Bayesian formulations with either local
[Ruzon and Tomasi 2000; Chuang et al. 2001] or global models
[Tai et al. 2007]. Local methods solve for alpha values first and then
estimate colors. On the other hand, Tai et al. [2007] iteratively es-
timates the alpha values and colors for all pixels of an input image,
which makes it feasible for only low-resolution images. In contrast,
our formulation is easily parallelizable as each pixel is treated in-
dependently, and thus, our method easily scales to HD resolutions
and beyond.

Sampling-based natural matting methods such as comprehen-
sive sampling [Shahrian et al. 2013] take alternate approaches to
compute foreground layer colors where they try all the possible
background-foreground color pairs to get the best match from a
limited set of color samples. Certain priors commonly utilized by
these methods, such as matte sparsity [Wang and Cohen 2007;
Gastal and Oliveira 2010], are often violated in green-screen keying
due to color spill.

On the other hand, commercial chroma-based keying tools sim-
ply suppress the background green-screen color everywhere in the
frame, which often distorts the colors of the foreground objects es-
pecially if they are similar to the color of the green-screen back-
ground. Around intricate object boundaries or motion blur, they
extend the foreground region without actually unmixing the colors,
and as a result they leave an unnatural halo around difficult regions.

To summarize, the natural matting methods in the literature, as
well as commercial keying tools, fail to achieve production-level
quality in green-screen keying due to their various shortcomings
discussed above. The main advantages of our color unmixing for-
mulation are the following:

—Our method does not enforce a matte-sparsity constraint, nor rely
on the suppression of the color of the green-screen background.

—Our formulation is highly scalable and parallelizable as each
pixel is processed independently.

—The proposed energy minimization successfully unmixes even
mixtures of very similar colors (demonstrated later in Sec-
tion 5.1) and is agnostic to the scene colors, i.e. we do not require
a strong chroma or luma component as in commercial software.

—Similar to KNN Matting [Chen et al. 2013], our method com-
putes multiple RGBA layers as its output, which enables fur-
ther interesting applications beyond green-screen matting, such
as color editing.

In the next section, we continue with a discussion of the two-step
user interaction process and other details of the color model, which
we treated as a black box so far.

3.1 Minimization of the color unmixing energy

The color unmixing energy introduced in Equation 3 is optimized
using Algorithm 1. The function minimized in line 1 is composed
of the original energy function and the deviations from the con-
straints. Minimization at this step is done using the nonlinear conju-
gate gradient method that takes xk as the initial value. The step size
of the nonlinear conjugate gradient at each iteration is determined
by a line search in the direction determined via the Polak–Ribière
formula. The box constraints are enforced at each iteration of the
nonlinear conjugate gradient method by clipping the elements to be
in the range [0, 1] and setting the gradients of the elements at the
boundaries 0 and 1 to zero if they are positive or negative, respec-
tively. As the parameters ρ(·) and λ(·) increase at each iteration of
Algorithm 1 (lines 2 and 3), the energy F(x) is minimized while
allowing smaller and smaller deviations from the alpha and color
constraints in line 1. λ(·) punishes deviation from individual con-
straints, while ρ(·) increases the constraint enforcement globally.
The input to Algorithm 1, initial values for αi and ui, are taken as:

αi =

{
1 if i = j
0 otherwise ui =

{
c if i = j
µi otherwise ,

where j = arg miniDi(c), i.e. only the alpha value correspond-
ing to the most likely distribution in the color model is initialized
to be 1. Note that the optimization procedure we described is inde-
pendent for each pixel in an image.

Algorithm 1 The Original Method of Multipliers
Input: x0

Define: k = 0, ρ0 = 0.1, λ0 =

[
0.1
0.1
0.1
0.1

]
, β = 10, γ = 0.25, ε > 0

1: xk+1 = arg min
x

(
F(x) + λTk G(x) + 1

2
ρk‖G(x)‖2

)
2: λk+1 = λk + ρkG(xk+1)

3: ρk+1 =

{
βρk if ‖G(xk+1)‖ > γ‖G(xk)‖
ρk otherwise

4: if ‖xk+1 − xk‖ > ε then
5: k← k + 1
6: go to Step 1
7: else
8: return xk+1

4. BUILDING THE COLOR MODEL

The energy function F we defined in Equation 3 requires a para-
metric representation of the colors that formed the color mixture,
which we refer as the color model. A set of distributions is obtained
in the first step of the user interaction of our method. The resulting
global color model (Section 4.1) is assumed to be able to represent
the whole image. The global color model is locally overcomplete
since very often each pixel color c is a mixture of only a subset
of the scene colors. We call the subset of distributions that partic-
ipate in the color mixture in a certain region of an image as the
active color distributions. In Section 4.2, we refine the global color
model such that each pixel is associated only with its active color
distributions. This refinement process is performed automatically
by utilizing a Markov Random Field optimization, but we also al-
low the user to edit the resulting local color models in an optional
second user interaction step.
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In comparison, commercial green-screen matting software pack-
ages offer a multitude of interaction modes ranging from back-
ground/foreground color selection to rotoscoping interfaces. They
also typically offer user control over various parameters that con-
trol the amount of chroma suppression, matte blurring or matte
bleed. Although this high level of control allows compositing artists
to fine-tune keying results, it also makes the process highly time-
consuming. On the other hand, natural matting methods typically
require trimaps (dense approximate segmentation of the image
into foreground, background and unknown regions), which are
in practice extremely tedious to generate especially for video se-
quences, and have been criticized for influencing the result only
indirectly [Levin et al. 2008a]. Some natural matting methods in-
stead rely on the user drawing a sparse set of scribbles, which often
results in a more convenient user interaction.

The goal of the user interaction in our method is to extract the
information we need to build the color model as intuitively and
efficiently as possible. Consecutively, instead of relying on com-
plex user interactions like commercial keying tools or requiring
prohibitively time-consuming inputs like a trimap, we utilize a two-
step interaction that involves drawing a small number of scribbles
(typically 7-8) and an optional pointing-and-clicking step.

4.1 Global Color Model

The user interaction typically starts with the user loading the first
frame of an input video using the interface of our method. The goal
of the first user interaction step is building the global color model,
which is achieved by the user drawing a scribble over each of the
dominant scene colors. The number of the scribbles N , and hence
the number of dominant scene colors, is determined by the user
depending on the scene. For example, in Figure 8-b (Our result,
input) each different color on the person’s wig is selected separately
as a dominant color, whereas in Figure 8-a (Our result, input), the
actor’s natural hair color is marked as a single dominant color.

Each scribble identifying a dominant color is used to extract the
parameters of a distinct normal distribution. The mean and covari-
ance of each distribution are computed simply from the pixels un-
derneath the corresponding scribbles (note that we do not use any
scribble propagation). Importantly, the results of our color unmix-
ing method are not sensitive to the exact placement, size or shape
of the scribbles (Figure 3). This property is very useful in practice,
as high-quality results can be obtained quickly from roughly drawn
scribbles. Additionally, once the global color model is created for
a single frame, it can typically be used for the remaining frames of
the shot assuming the dominant colors do not change significantly.
In fact, the global color models of all video results presented in this
work were generated from a single frame (typically the first frame).
The motivation behind this first user interaction step is utilizing the
inherently good cognitive skills of the users for clustering colors.
These cognitive skills are especially helpful in dealing with specific
situations such as the presence of strong color spill. Figure 10-d
(Original) shows an example where the color of the actor’s robe is
affected by the indirect illumination from the green-screen, except
for only very few small regions. In this case, recognizing the color
spill and selecting unaffected regions as a dominant color are trivial
for a human user while the same tasks are extremely difficult for an
automatic color clustering algorithm. In fact, although we exper-
imented with methods for automatically building the global color
model (see Section 5.3), we found that in most practical cases user
interaction would be necessary, and, therefore, favored our current
interactive approach. The ability to select the dominant colors also
gives the user artistic control over the color composition of the re-

Fig. 3. The keying results generated using four different scribbles demon-
strate the robustness of our algorithm against different user inputs.

sulting RGBA layers, which is especially useful for compositing
artists.

4.2 Local Color Model

One shortcoming of the global color model is the assumption that
the color of each pixel of the input video is a mixture of N un-
derlying colors from the N distributions that make up the color
model. However, in practice, this assumption is almost always in-
correct. For example, in the original image in Figure 4, skin tones
are only present in a small region near the actor’s face and neck.
If we solely rely on the global color model, we would have to use
the distribution corresponding to the skin tones for unmixing pix-
els in completely unrelated image regions, such as the far edges of
the green-screen background. This may cause the color unmixing
to hallucinate non-existent colors with small alpha values in such
regions. Thus, we perform a Markov Random Field (MRF)-based
optimization procedure over superpixels to estimate the active sub-
set of color distributions for different regions in an image.

If desired, the result of this optimization procedure can be
edited through user interaction via a simple point-and-click inter-
face. Since the automatic color activation is rather computation-
ally costly, and it would be cumbersome to perform the local color
model edits repeatedly for every frame, we propagate the local
color model of an edited frame to the following frame through sim-
ple superpixel matching. For every superpixel in a new frame, we
find a corresponding superpixel in the previous frame in a small
spatial neighborhood with the closest mean color. The active dis-
tributions of a superpixel in the new frame is defined as the active
distributions of its match in the previous frame. An example local
color models, a typical user edit, and propagation to consecutive
frames are illustrated in Figure 4.

The local color model computation step can loosely be related
to the sample selection process employed by sampling-based natu-
ral matting methods such as shared sampling [Gastal and Oliveira
2010], where the goal is also to find the best-fitting distributions for
every pixel. However, their brute-force approach is fundamentally
different from our MRF optimization process.

Several natural matting methods such as comprehensive sam-
pling [Shahrian et al. 2013] utilize localized color models. While
we select a subset of the global color model as the local color
model, comprehensive sampling estimates a set of normal distri-
butions from the closeby foreground and background regions for a
mixed-color pixel. Although this approach provides some robust-
ness against complex backgrounds, it has several shortcomings in
the green-screen keying case. Under heavy color spill, estimating
distributions locally is typically insufficient since the pure-color re-
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Fig. 4. Visualization: The result of local color model estimation can be visualized as a cascade of layers that illustrate the active color distributions by their
mean colors. Editing: The MRF optimization for the local color models may fail to distinguish between different objects with similar colors (such as the
markers and the actor’s face), or may give suboptimal results when one of the colors is present only faintly in a region (such as the color spill in the actor’s
hair from the green screen). Such situations can be alleviated by refining the local color model via a simple point-and-click user interface. Propagation: The
user interaction can be streamlined by propagating the local color model to consecutive frames.

gions may occur in a very limited part of the image and can not
be integrated into the local models. It also inherently increases the
number of necessary distributions to represent the image, making
the direct user-edits inconvenient if not impossible. The resulting
localized layers then require additional temporal coherency steps
to be applied to image sequences, since spatially they are expected
to change from frame to frame. Hence, we found our definition of
local color models as a subset of a global model to be practically
well-fitting to our target application of green-screen keying.

4.2.1 Local Color Model Estimation. We represent the active
distributions of a pixel as a binary vector A of length N , and de-
fine the cost of activating a subset of distributions for a pixel as
the sum of two terms. The first term is the minimum energy de-
fined in Equation 3 when the subset of distributions are fed to the
energy minimization algorithm detailed in Section 3, denoted by
FA. The intuition here is that if the optimization is conducted with
distributions that fail to effectively represent an observed color, the
minimized energy will still be high. The second term GA = ‖A‖,
‖ · ‖ representing the Euclidean norm, is added to this cost in order
to favor fewer active colors for each pixel. Following these defini-
tions, the unary potentials are defined as:

UA = FA + δGA, (7)

where δ is a user specified weight parameter typically in the range
[5 10]. The binary potentials between neighboring pixels are de-
fined as:

Bp,q = ‖Ap −Aq‖e−‖cp−cq‖, (8)

The energy function we want to minimize in order to determine
active color distributions is:

E = arg min
A(·)

∑
p

UAp + σ
∑

(p,q)∈Ω

Bp,q, (9)

where σ is the smoothness parameter, typically selected in the
range [0.01 0.05] and Ω is the set of 8-connected pixels.

The problem we defined in this section is analogous to multi-
label segmentation if we treat each possible subset of active color
distributions as a label. The minimization of the energy defined in
Equation 9 is NP-hard [Boykov et al. 2001]. We approximate the
global solution of this energy minimization using α − β swap al-
gorithm presented in [Boykov et al. 2001], using the publicly avail-
able implementation by the authors [Kolmogorov and Zabih 2004;
Boykov and Kolmogorov 2004].

Although we presented our energy formulation in this section at
the pixel level, computing FA for every subset and every pixel can
be time-consuming especially if N is high. In order to make the lo-
cal color model estimation more efficient, we instead construct the
random field using SLIC superpixels [Achanta et al. 2012] (typi-
cally 10k superpixels for a 1080p frame). This allows a user con-
trollable trade-off between quality and computational efficiency.

5. RESULTS

Our method is suitable for parallel computation as discussed in Sec-
tion 3. For a 1080p frame, our current C++/CUDA implementa-
tion typically requires 10 seconds for local color estimation (as-
suming 8 dominant colors), another second to propagate the local
color model to the following frame, and approximately 3 seconds
for color unmixing. Thus, at this resolution, the total computation
time for a still image is 13 seconds, which drops to 4 seconds per
frame for image sequences.

In this section, we evaluate our method and present results for
various applications. In the absence of a comprehensive ground
truth dataset of green-screen content, in our experiments, we utilize
computer generated ground truth, as well as keying results gener-
ated by a paid independent professional compositing artist. In con-
trast, all user interaction with our method was performed by people
with no prior experience in digital keying or compositing.

5.1 Statistical Validation

In this experiment, we test how distinct two colors have to be for
our unmixing algorithm to work successfully. To that end, we gen-
erated a total of 480 images, each obtained overlaying 2 or 3 images
created by randomly sampling from one of 720 different normal
distributions with varying mean vectors and covariance matrices.
The images were overlayed via a known alpha matte, which served
also as the ground truth. Examples of these test images are shown
in Figure 5. For the distinctiveness measure, we use Bhattacharyya
distance1 that models the amount of overlap between two normal
distributions. Figure 5 shows that our method can successfully un-
mix colors up to a point when they become hard to distinguish by
a human observer.

1Bhattacharyya distance betweenN (µi,Σi) andN (µj ,Σj) is defined as:

1
8 (µi − µj)TΣ−1(µi − µj) + 1

2 ln

(
det(Σ)√

det(Σi)det(Σj)

)
; Σ =

Σi+Σj

2
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Fig. 5. The average MSE error plotted with respect to the distance be-
tween the distributions in the color model. The rightmost images show two
cases where distributions are very distinct. The leftmost images are at the
point that our energy function starts to fail at discriminating between colors,
effectively illustrating the limits of the proposed color unmixing.

5.2 Evaluation on Synthetic Video

Due to the absence of ground-truth data for green-screen keying,
we prepared a test set of computer generated video sequences (Fig-
ure 6) rendered with a live-action green-screen in the background.
We used this ground truth data to compare the performance of our
method with three leading commercial keying tools (IBK, Keylight,
and Primatte). In a first experiment, we compared the out-of-the-
box performance by providing only minimal user input to all meth-
ods, i.e. by selecting a reasonable background color for the com-
mercial tools and selecting 5-9 dominant colors for our method.

In a second experiment, we asked a paid compositing artist to
generate the best possible result separately with each commercial
tool. The artist reported spending 105-120 minutes with each tool.
For comparison, we also processed the same sequences with our
method to achieve the best possible keying result, for which we
spent 10 minutes mostly refining the local color maps.

Table I shows that our keying results are objectively better than
the three commercial tools for all test sequences, both with min-
imal and optimal level of user input. In some cases, such as the
performance of Primatte in the Swing sequence, we observed that
further processing by the artist is essential to get a more reasonable
result, which means that for a novice user, it is harder to get a good
initial estimate. Note also that the user interaction of our method is
an order of magnitude more efficient when one seeks to obtain the
best possible result.

5.3 Color Model Estimation using EM

As an alternative to scribble-based interaction to infer the global
color model, we tried to estimate the distributions using expectation
maximization.

Ball Kong Swing

Fig. 6. Three animated image sequences are overlayed onto a challenging
green-screen in order to create data with ground truth. Ball represents a
simple scene with high motion blur, while Kong and Swing represent live
action scenes with fast motion.

Fig. 7. The results of our algorithm when the color model is inferred from
the scribbles (b) and when the color model is estimated by expectation max-
imization using different numbers of distributions (10 for (c), 6 for (d) and
4 for (e)). The EM algorithm is run using all the pixels in a small region of
interest (a). The highlighted colors are the colors estimated by EM that are
closest to our original four distributions.

The main problem with expectation maximization is that it is
unable to separate the areas with color spill (indirect illumination
from the green-screen material) from the clean areas. As Figure 7
shows, the distribution corresponding to the white robe of the ac-
tor appears greenish regardless of the number of distributions esti-
mated by EM. This is expected since the pure white color appears
in very limited regions while the greenish white is dominant due to
the strong color spill. Using our scribble interface, the user can
select regions without color spill and our color unmixing algorithm
is able to separate the spill from the robe.

5.4 Green-Screen Keying

5.4.1 Comparison with Natural Alpha Matting Methods. We
compare our method to four natural matting methods with publicly
available implementations. All four methods, namely KNN matting
(KNN)[Chen et al. 2013], shared matting (SM)[Gastal and Oliveira
2010], weighted color and texture sampling (WCTS) [Shahrian
and Rajan 2012] and comprehensive sampling (CS)[Shahrian et al.
2013] compute not only alpha values but also the corresponding
foreground colors. For this comparison, we first prepared a very
detailed and narrow trimap and dilated the unknown regions by 6
and 12 pixels to obtain two additional trimaps (following the proce-
dure from the alpha matting benchmark [Rhemann et al. 2009]). For
scenes with substantial color spill, we prepared two sets of trimaps,
where one considers the regions with spill as unknown, and the
other as foreground. The final trimaps and corresponding results
can be seen in Figure 8 and in the supplementary material.

The intricate object boundaries in Figure 8-a demonstrate a fail
case for sample selection strategies of WCTS and CS as they partly
use samples from the actor’s face rather than his hair, causing the
hair to appear to have a red hue. SM gives the cleanest result in
this case among the natural matting methods. Figure 8-b, shows
that the presence of the color green on the actor’s wig degrades the
performance of KNN, WCTS, and CS while the local color model

Table I. Quantitative comparison of the proposed algorithm with industrial
keying tools using minimal or optimal user interaction.

1000 ×MSE Color 1000 ×MSE Alpha
Ball Kong Swing Ball Kong Swing

IBK 0.0170 0.0553 0.1139 0.5353 0.5954 2.1232 M
inim

al

Keylight 1.6001 0.5247 0.4831 2.3645 1.3389 2.7036
Primatte 5.8097 1.6830 27.0635 6.8404 2.6980 32.0337

Ours 0.0096 0.0250 0.0489 0.1286 0.4114 1.2722
IBK 0.0129 0.0504 0.1658 0.0583 0.1510 0.2291 O

ptim
al

Keylight 0.0239 0.0842 0.1301 0.0200 0.4841 0.1583
Primatte 0.0492 0.2348 0.2587 0.1391 0.5487 0.6166

Ours 0.0034 0.0189 0.0304 0.0089 0.0421 0.0585
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Fig. 8. Results of KNN matting [Chen et al. 2013] (KNN), shared matting [Gastal and Oliveira 2010] (SM), weighted color and texture sampling [Shahrian
and Rajan 2012] (WCTS) and comprehensive sampling [Shahrian et al. 2013] (CS) are presented using different trimaps together with our input scribbles and
keying results. Note that our scribbles are drawn on the first frames of the corresponding videos. Plate (a) shows an example with intricate object boundaries
as well as translucent regions, and (b) shows another example with many foreground colors which also include a green tone close to the background color.

input Grundhofer et al. 2010 Ours

Fig. 9. Our result obtained using only the image with the green back-
ground is comparable to Grundhöfer et al. [2010]’s result obtained with
both input images.

assumption of SM helps to extract a cleaner foreground. However,
SM fails to extract the fine details as our method does, possibly due
to the sparsity assumption of SM.

The scenes shown in Figure 8 are selected to highlight sev-
eral challenges of green-screen keying. The results show that our
method performs favorably against the state-of-the-art natural mat-
ting methods.

5.4.2 Comparison with Commercial Keying Software. As
mentioned in Section 2, several methods have been proposed to
solve the keying problem by capturing the same foreground against
different background colors. Figure 9 shows that our algorithm
gives comparable results to such a method [Grundhöfer et al. 2010]
using only a single background.

The keying tools that are widely used in production do not rely
on any special setups. In this section, we compare our method with
some of the leading commercial keying tools, namely Keylight, Pri-
matte and IBK. To that end, we used green-screen shots from the

open source movie Tears of Steel2 as well as some content that we
shot with a Sony α7s camera.

In order to present a fair comparison, we asked a paid profes-
sional compositing artist to generate a separate result with each tool
for each test scene. Based on the artist’s feedback that in most real
world scenarios all three tools would be used sequentially to take
advantage of their individual strengths, we decided to ask the artist
also to generate another set of result where he is allowed to use all
of the three tools. We did not impose any constraints on the artist
other than asking him to avoid manually painting pixels.

For the four sequences in our test set, the artist reported a total
of 9 hours to get the results using multiple tools and reported an
estimated 12 hours for fixing any remaining issues. Our results, on
the other hand, were generated by ourselves using our tool in less
than an hour. Almost the entire time was spent on refining the local
color models using point and click interface of our method3.

The results presented in Figure 10 show that our results compare
favorably to the artist’s results, even when the artist uses all the
tools at his disposal and spends approximately an order of magni-
tude more time on manual editing. Additionally, the complex work-
flow and heavy local editing employed by the artist may result in
temporal coherence artifacts. In contrast, our results for the same
sequences do not suffer from such artifacts, as illustrated in Fig-
ure 13.

Because of the high amount of spill on the actor in scenes shown
in Figures 10-b and 10-d, actors appear transparent in the extracted
foreground layer. Discriminating between transparency occurring
from color spill or motion blur in a principled way is not a trivial

2(CC) Blender Foundation — mango.blender.org
3Refer to the supplemental video for a demonstration of user interaction.
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Fig. 10. Commercial keying tools, even when operated by a specialized compositing artist, may not be able to extract the fine details near intricate object
boundaries (a), fail to extract highly blurred objects (b), distort the foreground color if it is mixed the background color (c), or create unnatural artifacts around
blurred regions (d), while our algorithm is robust against such scenarios.

Fig. 11. The main real-world application of our method is digital compositing. The figure shows a number of toy examples that we generated using the
foreground layers obtained with our prototype implementation. Background images courtesy of Flickr users milanboers (a) and jeremylevinedesign (c).

problem. In order to account for this, we apply a simple post pro-
cessing composed of boosting α values of the foreground layers
with high spill to 1 except for the edges of the layers. For instance,
the layer corresponding to the white robe in Figure 10-d appears
transparent after color unmixing. The robe layer is post-processed
such that it has unity alpha values in regions that are not on the

edges of the robe. The edges are left untouched to account for the
smooth transition and the motion blur around the edges. While this
post-processing is not completely fool-proof, i.e. its performance
will degrade if there is strong color spill on layers with high trans-
parency, we found it to be helpful for compositing and left the clas-
sification of non-unity alpha values to color-spill or transparency

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.
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Fig. 12. A possible application scenario for our color unmixing algorithm is interactive color editing. Here, an image with input scribbles and corresponding
color layers are shown together with an edited image using our layers.

Fig. 13. Close-up around the same single filament in several frames of the
video. Notice that the filament that sticks out is captured using our method
even when it is motion-blurred (middle), but the artist was only able to
capture it in some of the frames (bottom).

Fig. 14. Despite the very complex scene structure, our algorithm success-
fully removes the sky in the background, demonstrating an advantage of our
per-pixel approach to color unmixing that does not rely on spatial cues.

as a future work. Figure 11 shows examples compositing results
generated using the foreground layers extracted by our method.

5.5 Further Applications

5.5.1 Non-Green-Screen Keying. We also tested our method
using scenes with non-green-screen backgrounds. Figure 14 shows
an example in which our per-pixel color unmixing approach proves
to be robust against complex foreground structures. Another exam-
ple, one that includes reflections from a semi-transparent medium,
is shown in Figure 15. While the backgrounds in these examples
are admittedly simple, the results presented in this section suggest

(a)

(b)

(c)

Fig. 15. The layers computed by our algorithm is used to replace the back-
ground (b) and change the color of the blurred object (c) while retaining the
reflections. Note that the result images are color graded while compositing.
Background image courtesy of Flickr user davejdoe.

that our method could be useful for an extended set of applications
beyond green-screen keying. However, it is worth noting that our
method is limited to simple backgrounds and is not suitable for
general purpose natural matting.

5.5.2 Color Manipulation. Representing the image with mul-
tiple layers rather than just foreground and background opens up
new application areas such as color editing. By giving the artist
freedom to edit layers of each dominant color in the scene, interest-
ing results can be achieved easily while not being limited by scenes
with motion blur, as demonstrated in Figures 1 and 15.

The layers extracted by our unmixing algorithm can also be used
for photo recoloring similar to soft segmentation [Tai et al. 2005;
2007] or palette-based recoloring algorithms such as [Chang et al.
2015], as seen in Figure 12.

6. LIMITATIONS AND DISCUSSION

While in our experiments we have not noticed any significant tem-
poral consistency issues, our test scenes had admittedly near con-
stant illumination. In practice, keying may need to be performed in
outdoor scenes (such as driving), where the illumination can change
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Fig. 16. We changed the illumination or contrast of the input frame and
extracted the foreground using the same color model constructed from the
original image (a). With rather slight changes (b, d), our method is able to
successfully extract the foreground. With a significant change in brightness
(c), we observe a drop in the performance of our method, characterized by
the halo around the actor. On the other hand, with very significant contrast
change (e), some intricate details are missed and the background color re-
mains in some small regions in the foreground.

drastically from one frame to another. Due to the absence of any
mechanism to enforce temporal coherence, we expect the perfor-
mance of our method to decrease in such settings, as demonstrated
in Figure 16.

The global color model as a small set of distributions may not
be able to effectively represent non-green-screen backgrounds We
tested our method on several images from the alpha matting bench-
mark [Rhemann et al. 2009]. Figure 17 shows typical natural mat-
ting results where our method works well when our main assump-
tions are satisfied, but fails when they are violated.

Our scribble interface for extracting the color model requires the
unmixed colors to be present in at least one of the frames. For
highly transparent media such as thin smoke, the pure color can not
be determined via the proposed interaction and hence it is not pos-
sible for our keying system to extract the layer with only smoke.
Devising an algorithm that can infer the colors that only appear
mixed with others in a scene is an interesting direction for further
research.

The proposed color unmixing algorithm may slightly overesti-
mate the alpha values of some layers in some cases. Since the en-
ergy minimization favors underlying colors that are closer to the
mean vector of the distributions, the foreground layer might get a
small portion of the color mixture since matte sparsity is not en-
forced in the color unmixing energy minimization by design. This
mainly occurs when the underlying color of one of the layers are
not well-represented by the corresponding distribution. These arti-
ficially occurring alpha values being very small, we observed that

Fig. 17. When our assumption of a small number of scene colors is satis-
fied, we are able to get a successful foreground layer (left), but the quality
drops significantly otherwise. Images courtesy of Rhemann et al. [2009].

this behavior does not result in any disturbing artifacts in the keying
results.

7. CONCLUSION

In this paper, we proposed an interactive technique for green-screen
keying, which is a highly relevant problem in the post-production
industry due to the popularity of digital compositing. We pre-
sented a novel energy minimization-based color unmixing algo-
rithm which relies on global / local parametric color models and
can achieve high-quality keying results even in challenging cases.
We show that our algorithm outperforms the state-of-the-art in nat-
ural matting in the case of green-screen keying. Our technique also
substantially decreases the interaction time required for achiev-
ing production-ready keying quality when compared to commercial
keying tools.

Future research directions include the investigation of temporal
coherency for scenes with dramatic illumination changes, evalu-
ating whether the discriminative power of our algorithm can be
improved by using a perceptually uniform color space instead of
RGB, and exploring further applications of our color based soft-
segmentation such as local contrast editing.
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