
Boosting Monocular Depth Estimation Models to High-Resolution via
Content-Adaptive Multi-Resolution Merging

Supplementary Material

S. Mahdi H. Miangoleh∗1 Sebastian Dille∗1 Long Mai2 Sylvain Paris2 Yağız Aksoy1
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In this supplementary document, we present (i) tables
with additional error metrics as well as visual demonstration
of the D3R error metric we utilize in Table 1 and Figures 8
and 9, (ii) extended figures and discussions on resolution
and patch selection processes in Figures 10, 11 and 12, (iii)
detailed explanation for the training process of our merg-
ing network in Figure 13, (iv) our figures of the main doc-
ument replicated with SGR [7] as the base network (Fig-
ures 1, 2, 3, 4, 5, 6 and 7) and (v) additional results and a
discussion on the running time of our method.

A. Extended discussion on metrics
We notice a discrepancy between the apparent visual

improvement gained from depth refinement techniques
and numerical results based on common metrics such as
RMSE, AbsRel and δt (percentage of pixels with δ =

max( zi
z∗
i
,
z∗
i

zi
) > t). Figure 8 demonstrates on an example

that qualitative differences do not correlate well with these
metrics.

RMSE and also more recently introduced alternatives
such as perceptual similarity metric by Zhang et al. [8] are
influenced by the large-scale structure of the scene but do
not measure performance around fine details very well. In
the main document, we describe a metric, D3R, that adapts
the ordinal relation metric from [7] and mixes it with the
point pair selection method introduced in [9] to capture per-
formance around high-frequency details. In their method,

Figure 1: As extension to Figure 7, we show an exam-
ple of the base estimate for a given region (second from
left), a patch-estimate pasted onto the base estimate from
SGR [7](second from right), and our result after merging
(right).

Zoran et al. [9] propose to use superpixel segments’ centers
to select point pairs. Instead of using superpixels from the
RGB image we directly use the ground truth depth to gen-
erate superpixels. We then consider the ratio between the
ground truth depth values at each center and its 1-neighbour
centers in the superpixel segmentation and pick center pairs
such that this ratio is bigger than a determined threshold
so that the picked pairs represent a relatively big change in
depth. This way, the selected points will specifically reflect
depth accuracy around object boundaries. We refer to this
adjusted metric as D3R. The aforementioned threshold is
empirically set to 0.1 in our experiments. Figure 9 shows
an example for the created superpixel segmentation, the se-
lected point pairs for evaluation and resulting error points
for the base estimation.

We compare the results of our metric against RMSE in
two examples in Figure 8. In both cases, D3R shows a no-
ticeable improvement for the results obtained by our method
compared to the base estimation. This said, D3R will only
reflect accuracy around the objects boundaries and shall be
used as complementary to conventional metrics.

In addition to the metrics we evaluated on in
the paper, we extend and report our evaluations
on δ1.252 , δ1.253 , AbsRel (1/M

∑M
i=1 |zi − z∗i |/z∗i ),

Log10 (1/M
∑M

i=1 |log(zi)− log(z∗i )|) and SqRel
(1/M

∑M
i=1 (zi − z∗i )2/z∗i ).

B. Extended discussion on whole-image esti-
mation and patch selection

We want to ensure that for the whole-image estimation
(Section 6.1 in the main document), individual depth cues
have a distance of at most the size of the receptive field from
each other. To achieve this, we calculate an edge map by ap-
plying a threshold on the RGB image gradients and rescale
this edge map to different sizes, starting at the receptive field
size itself and increasing it by half of the receptive field size
for every step. Next, we apply a dilation kernel with the
size of the receptive field on the resulting edge map. If the



Figure 2: We show a visualization of our pipeline corresponding to Figure 2 of main paper with results obtained from
SGR [7]: (b) As before, we start with feeding the image in low- and high-resolution to the network and merge them to get a
base estimate. Note how merging generates a stable result although the low- and high-frequency estimates are very different
from MiDaS [5]. (c) We demonstrate how the selected patches vary based on the receptive field size of the underlying
network. Again, a subset of selected patches with their depth estimates is shown. (d) We merge the patch estimates into our
base estimate in (b) to get our final high-resolution result.

Figure 3: We complete our analysis of different input resolutions in Figure 3 of main paper with additional results from
SGR [7]. At small input resolutions, the network [5] is able to estimate the overall structure of the scene successfully
but often miss the details in the image, notice the missing birds in the bottom image. As the resolution gets higher, the
performance around boundaries gets much better. However, the network starts losing the overall structure of the scene and
generates low-frequency artifacts in the estimate. The resolution at which these artifacts start appearing depends on the
distribution of contextual cues in the image.

Figure 4: We complement the upsampling results from Mi-
DaS [5]from Figure 5 of main paper here with matching
results from SGR [7] The original image with resolution
192 × 192 gains additional details in the depth estimate
when fed to the network after upsampling to the receptive
field size of 448× 448 (right) instead of its original resolu-
tion (middle).

Figure 5: We show the corresponding results to the recep-
tive field test in Figure 4 of main paper based on images
from SGR [7]. As the resolution increases starting from the
receptive field size of 448, the network again progressively
degrades the accuracy.

dilation does not end up covering the whole image, we con-
clude that the depth cues are further apart than the receptive
field size of the network and that we have found our maxi-



Figure 6: Corresponding to Figure 6 of main paper, we analyze the depth estimates obtained at different resolutions, (a) at the
training resolution of SGR[5] at 448× 448, (b) at the selected resolution with edges separated at most by 448 pixels, and (c)
at a higher resolution that leaves 20% of the pixels without nearby edges. Again the increasing resolution results in sharper
predictions compared to (b), but the estimates become unstable in terms of the overall structure, visible especially around the
tires. (d) Our merging network is able to fuse the fine-grain details in (c) into the consistent structure in (a) to get the best of
two worlds.

Input SGR [7] SGR + Bilat.
Upsamp.

SGR +
Refinement [4]

Ours using SGR GT

Figure 7: We extend the comparison in Figure 9 of main paper of our method with bilateral upsampling and the refinement
method proposed by Niklaus et al. [4] by applying them to SGR [7] output. Refinement methods fail to add any details that
does not exist in the original estimation. With our patch-based merging framework, we are able to generate sharp details in
the image.

mum input resolution. As we mentioned in the main paper,
we allow some percentage denoted by threshold t of these
’black areas’, the areas that are not covered in the image
after dilation, to happen and rely on double-estimation pro-
cedure to remove the artifacts. Table 1 and Table 3 are the
extended counterpart of Table 1 of the paper that show the
numerical evaluation for different t-values, with and with-
out double-estimation procedure, on two different datasets
and different base networks. We show examples of the di-
lated maps in Figure 10. Note that the maps are inverted to
better visualize the actual gradients.

As mentioned in Section 6 in the main document, our

minimum patch size is applied on this calculated resolu-
tion, thus its affected by the depth cue density of the im-
age. Moreover, we use a scale factor to adjust the minimum
patch size for images which have a low overall depth cue
density but a high concentration of depth cues within few
regions. Figure 11 shows how the minimum patch size is
affected by the whole image resolution and how the factor
adjusts the patch size when needed. Additionally, we show
in Figure 12 the improvement for a patch by choosing the
appropriate area size.



Figure 8: We show the discrepancy between visual improvement and numerical effect on RMSE against D3R. We compare
estimations from an RGB image (top left) against its ground truth (bottom left). Note how for the two results from the
original versions of SGR [7] (top middle) and MiDaS [5] (top right) the RMSE varies by over 30% though they’re visually
very similar. Compared to the improvement through our pipeline (bottom row, middle and right), especially on the grid,
the RMSE barely changes. The D3R metric shows a clear improvement for the sharper images while showing only a small
distance between the estimations from SGR [7] and MiDaS [5].

Figure 9: We show an example on the point pairs selected for our D3R metric with RGB input on the left as a reference. We
overlay the created superpixels in dark blue and all selected point pairs in light blue over the ground truth depth in a). In b),
we show two example regions more closely for visualization. Next, we analyse the error points in light blue for the original
MiDaS [5] estimation in c) and compare it with the error points (again light blue) after applying our results in d). Note how
the error points especially around the leaves of the plant are drastically reduced.

C. Extended discussion on the merging net-
work training procedure

The goal for our merging network is to seamlessly
merge the complementary information coming from the
low-resolution and high-resolution depth estimations. A
proxy for high-resolution estimation to be used as target in
training is the whole-image estimation at a higher resolu-

tion. As mentioned in the paper, we use 672*672 as the high
resolution to generate these proxy depth maps. To have a
smooth training, we discard estimations with artifacts from
the training data. We use a guided filtering on the patch es-
timation with the proxy ground truth as the guide to ensure
the proxy ground truth and the patch estimations have the
same amount of fine-grained details. Furthermore, to make
sure the low resolution estimation training depth data and



Figure 10: We show dilated gradient maps at different resolutions. The image gradients are displayed in green, blue are
the dilated regions without gradients. Notice how the resolution of the whole image estimation (right) increases the more
gradients are in the image.

Figure 11: We show the effect of our scale factor on the patch size with example patches. An image with a low amount of
gradients in the first row and a sparse gradient map (second column) results in a low-res double estimation (third column).
The receptive field size (red rectangle) takes a large portion of the image. The patch size (green rectangles) is close to the
size of the receptive field. An image with a high amount of gradients in the second row and a dense gradient map results in
a high-res double estimation with the minimum patch size (green rectangles) and the receptive field size (red rectangle) only
taking a small part of the image. Lastly, an image with a high amount of gradients located at the bottom in the third row
still results in a sparse gradient map. With our factor, the minimum patch size (green rectangles) gets adjusted to a smaller
resolution than the receptive field size (red rectangle). We also show the effective resolutions of the whole image estimations
and the our final result. Note that the the final resolution of the third image gets increased by our scale factor to be larger than
the first image although the whole image estimation is smaller. This is due to the high gradient concentration in the lower
part of the third image.



Figure 12: We show the effect of choosing the correct area
size for a patch. For the patch on the left, the direct estima-
tion (middle) gives a result with reduced sharpness towards
the borders and estimation artifacts. Notice the blurred bit
on the bottom left and the dot-like artifacts on the leg. If we
increase the area size by 60% (right), the bottom bit is sharp
and the artifacts are reduced.

Figure 13: We show examples of the training data that we
generate for the merging network. First row (left to right):
1 - low resolution depth patch from low resolution whole-
image estimation 2 - high resolution depth estimated at a
high resolution from a patch of the rgb image 3 - proxy
ground truth patch from high resolution whole-image es-
timation. Second row: training data after proper guided
filtering (left to right): 4 - low resolution input, 5 - high
resolution patch estimation input, 6 - ground truth proxy.

the proxy depth share the same absolute value, we blur the
proxy image with the guidance of the low resolution depth
image to obtain the low resolution depth. We use guided
filter instead of a simple Gaussian blur to ensure that the
training data has the same characteristics as the low reso-
lution estimations. Figure 13 shows depth images we use
to generate the training data alongside with the training im-
ages we generate by filtering the depth maps as described.

D. Extended discussion on our results
Running time

Our method consists of two major steps: 1. Finding the
optimal whole-image resolution and performing the double-
estimation procedure to obtain the base depth estimation
and 2. selecting patches followed by a double-estimation
procedure on each patch and merging them to the base esti-
mation.

The first step contains searching for the whole-image
resolution, two forward paths on the depth estimation net-
work and one forward path on the merge network for
the double-estimation procedure. This step takes on aver-
age ∼5 seconds on high-gradient-density images from the
RAISE [1] dataset. The search process is the most time-
consuming part here. Discarding the whole-image search
process and fixing a number for the whole-image resolution
can decrease the run time to less than a second per image in-
dependent of the image content. The second step is highly
dependant to the image content because of the context de-
pendency of our patch selection method. For each selected
patch, we have two forward paths on the depth estimation
network and one forward path on the merge network for the
double-estimation procedure plus one forward path on the
merge network to merge the patch estimation to the base
depth. For the complete pipeline, it can happen that the
running time for an image on average is increased to ∼20
seconds per image on the same dataset.

As we show in Table 2 and 4, our method outperforms
the baseline and other state of the art refinement methods
with only using double estimation. Quantitative perfor-
mance alongside the good running time property makes the
double-estimate procedure on its own an adequate method
to generate higher resolution depth estimations.

Additional evaluation results

We present the extension of Table 1 of the original paper
on Middleburry2014 [6] and Ibims-1 [2] in Tables 2 and 4
respectively. For both base networks, our approach excels
in both D3R as well as the ORD (original ordinal relation
metric [7]) over the raw estimations and other refinement
methods. Our method is able to halve the D3R error for
estimations on MiDaS and still reduces estimation errors
from SGR by roughly 40%. Interestingly, for MiDaS [5] the
result already improves if an optimized input size for global
estimation is selected. This confirms our assumption that
the context density heavily influences the estimation quality.
Our method also performs comparably in terms of RMSE,
δ1.25, δ1.252 , δ1.253 , Log10, SqRel and AbsRel which favor
low-frequency global regions.



Table 1: Extension of Table 2 in the main paper by results based on SGR [7] and additional metrics: Whole image estimation
performance with changing resolution and double estimation on the Middlebury dataset [6]. Lower is better.

Base Size ORD [7] D3R RMSE δ > 1.25 δ > 1.252 δ > 1.253 Log10 Absrel Sqrel

Fixed (384) 0.3840 0.3343 0.1708 0.7649 0.5392 0.3587 0.2810 0.7242 0.1042

Fixed (768) 0.3718 0.2176 0.1527 0.7454 0.5029 0.3200 0.2587 0.7801 0.1014

Fixed (1152) 0.4266 0.1876 0.1654 0.7403 0.5434 0.3827 0.2812 0.9255 0.1339

Fixed (1536) 0.4787 0.1892 0.1864 0.7933 0.6082 0.4475 0.3146 1.1855 0.1713

Context-adaptive (R0) 0.3554 0.2504 0.1481 0.7161 0.4751 0.3067 0.2471 0.7283 0.0916
Context-adaptive (R10) 0.4579 0.1971 0.1836 0.7882 0.5908 0.4146 0.3045 1.1725 0.1691

Si
ng

le

Context-adaptive (R20) 0.5054 0.1995 0.1980 0.8035 0.6303 0.4686 0.3334 1.3799 0.2006

Context-adaptive (R0) 0.3617 0.2585 0.1643 0.7491 0.5241 0.3555 0.2717 0.7016 0.1085

Context-adaptive (R10) 0.3491 0.1838 0.1570 0.7307 0.5046 0.3309 0.2579 0.6581 0.0961

Context-adaptive (R20) 0.3496 0.1709 0.1563 0.7364 0.5086 0.3316 0.2576 0.6540 0.0936

M
iD

aS
[5

]

D
ou

bl
e

Context-adaptive (R30) 0.3521 0.1715 0.1567 0.7459 0.5116 0.3337 0.2588 0.6501 0.0928

Fixed (448) 0.4087 0.3889 0.2123 0.7989 0.6089 0.4711 0.3572 0.6804 0.1196

Fixed (896) 0.4327 0.2968 0.1987 0.7940 0.6005 0.4414 0.3372 0.7661 0.1015
Fixed (1344) 0.5044 0.2882 0.2280 0.8271 0.6617 0.5087 0.3829 0.9694 0.1427

Fixed (1792) 0.5754 0.3018 0.2479 0.8441 0.7000 0.5600 0.4112 1.0438 0.1594

Context-adaptive (R0) 0.4312 0.3131 0.1999 0.7841 0.5840 0.4424 0.3337 0.7243 0.1148

Context-adaptive (R10) 0.5610 0.3058 0.2368 0.8377 0.6840 0.5434 0.3983 1.0633 0.1477

Si
ng

le

Context-adaptive (R20) 0.5974 0.3227 0.2447 0.8465 0.6861 0.5434 0.4034 1.1855 0.1797

Context-adaptive (R0) 0.3890 0.3066 0.2034 0.7860 0.5933 0.4528 0.3419 0.6585 0.1247

Context-adaptive (R10) 0.3903 0.2592 0.2000 0.7949 0.6002 0.4533 0.3352 0.6724 0.1217

Context-adaptive (R20) 0.3944 0.2540 0.1983 0.7931 0.5966 0.4488 0.3309 0.6655 0.1136

SG
R

[7
]

D
ou

bl
e

Context-adaptive (R30) 0.3941 0.2569 0.1980 0.7964 0.5973 0.4499 0.3311 0.6695 0.1167

Table 2: Quantitative evaluation and comparison with state-of-the-art refinement methods using MiDaS [5] and SGR [7] as
base networks on Middleburry2014[6], as extension of Table 1 in the main paper. Lower is better.

base Method ORD [7] D3R RMSE δ > 1.25 δ > 1.252 δ > 1.253 Log10 Absrel Sqrel

MiDaS 0.3840 0.3343 0.1708 0.7649 0.5392 0.3587 0.2810 0.7242 0.1042

Refinement-Bilateral 0.3806 0.3366 0.1707 0.7627 0.5396 0.3614 0.2809 0.7287 0.1071

Refinement-with [4] 0.3826 0.3377 0.1704 0.7622 0.5399 0.3594 0.2797 0.7305 0.1066

Single-estimation (R0) 0.3554 0.2504 0.1481 0.7161 0.4751 0.3067 0.2471 0.7283 0.0916
Double-estimation (R20) 0.3496 0.1709 0.1563 0.7364 0.5086 0.3316 0.2576 0.6540 0.0936

M
iD

aS
[5

]

OURS 0.3467 0.1578 0.1557 0.7406 0.5111 0.3377 0.2586 0.6676 0.1014

SGR 0.4087 0.3889 0.2123 0.7989 0.6089 0.4711 0.3572 0.6804 0.1196

Refinement-Bilateral 0.4078 0.3904 0.2122 0.7990 0.6080 0.4714 0.3563 0.6825 0.1227

Refinement-with [4] 0.4081 0.3880 0.2115 0.7993 0.6054 0.4667 0.3533 0.6712 0.1194

Single-estimation (R0) 0.4312 0.3131 0.1999 0.7841 0.5840 0.4424 0.3337 0.7243 0.1148

Double-estimation (R20) 0.3944 0.2540 0.1983 0.7931 0.5966 0.4488 0.3309 0.6655 0.1136

SG
R

[7
]

OURS 0.3879 0.2324 0.1973 0.7891 0.5911 0.4470 0.3302 0.6705 0.1200

We also notice that our relative improvement on D3R for
Ibims-1 [2] is less significant, though with a reduction of
> 12% for MiDaS [5] estimations still visible. This is ex-

plainable if we take the original image resolution into ac-
count. For a dataset like Ibims-1 with a spatial resolution
of 640x480 pixels, the original MiDaS training resolution



Table 3: Extension of Table 2 in the main paper by results based on SGR [7] and additional metrics: Whole image estimation
performance with changing resolution and double estimation on the Ibims1 dataset [2]. Lower is better.

Base Size ORD [7] D3R RMSE δ > 1.25 δ > 1.252 δ > 1.253 Log10 Absrel Sqrel

Fixed (384) 0.4002 0.3698 0.1596 0.6345 0.4127 0.2712 0.2473 2.0325 0.7903

Fixed (768) 0.4657 0.3165 0.1700 0.6658 0.4468 0.3019 0.2637 2.1768 0.7954

Fixed (1152) 0.5876 0.3330 0.1917 0.7153 0.4983 0.3486 0.2930 2.5442 0.9339

Fixed (1536) 0.6694 0.4005 0.2101 0.7325 0.5225 0.3767 0.3146 2.9826 1.2006

Context-adaptive (R0) 0.4504 0.3269 0.1687 0.6633 0.4442 0.2896 0.2589 2.1160 0.7857
Context-adaptive (R10) 0.5868 0.3762 0.1928 0.7059 0.4820 0.3354 0.2917 2.7206 1.0936

Si
ng

le

Context-adaptive (R20) 0.6249 0.3944 0.2025 0.7165 0.5067 0.3620 0.3046 2.8297 1.1471

Context-adaptive (R0) 0.3853 0.3321 0.1600 0.6366 0.4138 0.2738 0.2475 2.0352 0.7996

Context-adaptive (R10) 0.4152 0.3258 0.1596 0.6378 0.4135 0.2725 0.2475 2.0399 0.7938

Context-adaptive (R20) 0.4112 0.3272 0.1597 0.6386 0.4139 0.2716 0.2474 2.0449 0.7943

M
iD

aS
[5

]

D
ou

bl
e

Context-adaptive (R30) 0.4020 0.3325 0.1602 0.6407 0.4157 0.2727 0.2479 2.0482 0.7964

Fixed (448) 0.5555 0.4736 0.1956 0.7513 0.5411 0.3808 0.3056 1.9813 0.7680
Fixed (896) 0.7224 0.4941 0.2263 0.7978 0.6163 0.4568 0.3476 2.4066 0.9271

Fixed (1344) 0.8208 0.5850 0.2456 0.8272 0.6608 0.5045 0.3762 2.7507 1.0965

Fixed (1792) 0.8863 0.6573 0.2602 0.8413 0.6857 0.5370 0.3983 3.0460 1.3221

Context-adaptive (R0) 0.6343 0.4901 0.2146 0.7856 0.5961 0.4366 0.3351 2.1914 0.7978

Context-adaptive (R10) 0.7820 0.5929 0.2412 0.8255 0.6590 0.5078 0.3762 2.6508 1.0119

Si
ng

le

Context-adaptive (R20) 0.8540 0.6244 0.2509 0.8315 0.6714 0.5214 0.3894 2.8449 1.1453

Context-adaptive (R0) 0.5405 0.4502 0.1969 0.7457 0.5367 0.3804 0.3050 2.0008 0.8088

Context-adaptive (R10) 0.5591 0.4681 0.1971 0.7477 0.5372 0.3832 0.3052 2.0205 0.8050

Context-adaptive (R20) 0.5591 0.4829 0.1967 0.7473 0.5352 0.3821 0.3047 2.0285 0.8034

SG
R

[7
]

D
ou

bl
e

Context-adaptive (R30) 0.5643 0.4847 0.1967 0.7476 0.5362 0.3824 0.3041 2.0301 0.8014

Table 4: Quantitative evaluation and comparison with state-of-the-art refinement methods using MiDaS [5] and SGR [7] as
base networks on Ibims1[2], as extension of Table 1 in the main paper. Lower is better.

base Method ORD [7] D3R RMSE δ > 1.25 δ > 1.252 δ > 1.253 Log10 Absrel Sqrel

MiDaS 0.4002 0.3698 0.1596 0.6345 0.4127 0.2712 0.2473 2.0325 0.7903

Refinement-Bilateral 0.3982 0.3768 0.1596 0.6350 0.4120 0.2705 0.2471 2.0238 0.7875

Refinement-with [4] 0.4006 0.3761 0.1600 0.6351 0.4132 0.2716 0.2478 2.0519 0.7986

Single-estimation (R0) 0.4504 0.3269 0.1687 0.6633 0.4442 0.2896 0.2589 2.1160 0.7857
Double-estimation (R20) 0.4112 0.3272 0.1597 0.6386 0.4139 0.2716 0.2474 2.0449 0.7943

M
iD

aS
[5

]

OURS 0.3938 0.3222 0.1598 0.6390 0.4144 0.2718 0.2477 2.0510 0.8007

SGR 0.5555 0.4736 0.1956 0.7513 0.5411 0.3808 0.3056 1.9813 0.7680
Refinement-Bilateral 0.5551 0.4750 0.1956 0.7501 0.5416 0.3822 0.3062 1.9754 0.7709

Refinement-with [4] 0.5488 0.4780 0.1953 0.7482 0.5388 0.3789 0.3041 1.9953 0.7751

Single-estimation (R0) 0.6343 0.4901 0.2146 0.7856 0.5961 0.4366 0.3351 2.1914 0.7978

Double-estimation (R20) 0.5591 0.4829 0.1967 0.7473 0.5352 0.3821 0.3047 2.0285 0.8034

SG
R

[7
]

OURS 0.5538 0.4671 0.1965 0.7460 0.5340 0.3796 0.3039 2.0247 0.8055

is already relatively close to the optimal size for estima-
tion. This leaves less room for improvement through in-
put optimization. We conclude that our method is creating

more significant results the higher the original image reso-
lution is. Figure 14 shows corresponding results from high-
resolution images from the RAISE [1] dataset.



Input MiDaS [5] Ours using MiDaS SGR [7] Ours using SGR

Figure 14: We present additional results to Figure 8 using MiDaS [5] and the Structure-Guided Ranking Loss method [7]
compared to the original methods run at their default size with effective resolutions for every image.



Figure 15: The patch-based procedure is causing a dis-
tortion of the scene geometry. This causes straight edges
like the walls in b) to appear bumpy compared to the low-
resolution full image estimation in a).

Geometric accuracy

Monocular depth estimation networks utilize depth cues
to predict the depth relations within the scene. They can
determine if one object is closer than another, but fail in es-
tablishing the absolute distance to the camera. Our method
is limited by the same constrains. Additionally, every se-
lected patch is treated by the underlying depth estimation
network as a unique image. This causes the depth range of
the patch estimation to differ from the corresponding area
within the full image estimation, both regarding the limits
as well as the distribution. Our merging network can re-
duce this difference greatly, but is not able to eliminate it
completely. This results in visible distortions of the scene
geometry as shown in Figure 15. Especially straight edges
appear bumpy.

Sensitivity to input image noise

During the evaluation we noticed that our method can
not generate reasonable estimations on the NYU [3] dataset.
The image resolution for NYU is not high, but compara-
ble to Ibims-1 [2] for which we achieve competitive re-
sults. The main difference between these datasets is the
quality of the RGB images in terms of presence of noise
and sharpness of the images. We notice that the presence of
the noise highly effects the performance of the underlying
base depth estimation network in generating higher resolu-
tion estimates. As a result, our method also fails to generate
reasonable estimations. In order to examine the effect of
noise on the underlying base depth estimation network we
added noise to the Ibims-1 [2] dataset RGB images. Table 5
shows the effect of adding noise to the Ibims-1 [2] dataset.

Table 5: Effect of adding noise the RGB images on the re-
sulted depth estimations using Ibims-1 [2] dataset.

Noise ORD [7] D3R RMSE δ > 1.25

None 0.4112 0.3272 0.1597 0.6386
var=0.001 0.4529 0.3830 0.1634 0.6484

D
ou

bl
e

es
tim

at
io

n
(R

2
0
)

var=0.002 0.4455 0.4021 0.1637 0.6515

None 0.3938 0.3222 0.1598 0.6390
var=0.001 0.4264 0.3813 0.1638 0.6464

O
U

R
S

var=0.002 0.4430 0.3984 0.1631 0.6470
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[5] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE Trans. Pattern Anal. Mach. Intell., 2020.

[6] D. Scharstein, H. Hirschmüller, York Kitajima, Greg Krath-
wohl, Nera Nesic, X. Wang, and P. Westling. High-resolution
stereo datasets with subpixel-accurate ground truth. In Proc.
GCPR, 2014.

[7] Ke Xian, Jianming Zhang, Oliver Wang, Long Mai, Zhe Lin,
and Zhiguo Cao. Structure-guided ranking loss for single im-
age depth prediction. In Proc. CVPR, 2020.

[8] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep fea-
tures as a perceptual metric. In Proc. CVPR, 2018.

[9] Daniel Zoran, Phillip Isola, Dilip Krishnan, and William T
Freeman. Learning ordinal relationships for mid-level vision.
In Proc. ICCV, 2015.


