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Abstract. Shadows are illuminated as a result of Rayleigh scattering
phenomenon, which happens to be more effective for small wavelengths
of light. We propose utilization of false color images for shadow detec-
tion, since the transformation eliminates high frequency blue component
and introduces low frequency near-infrared channel. Effectiveness of the
approach is tested by using several shadow-variant texture and color-
related cues proposed in the literature. Performances of these cues in
regular and false color images are compared and analyzed within a su-
pervised system by using a support vector machine classifier.

1 Introduction

In natural outdoor and satellite images, shadows are illuminated as a result of
atmospheric scattering of sunlight. There are several scattering phenomenons
modeled in the literature [1] and in this work, Rayleigh scattering is assumed to
be the most dominant one.

In the atmosphere, the amount a light beam is scattered depend on the fourth
negative power of the wavelength(λ−4)[2]. Consecutively, light with shorter wave-
lengths, such as blue and violet colors, are the most scattered and light with
longer wavelengths, such as red color and near-infrared (NIR) illumination, are
the least scattered components of the sunlight. Actually, NIR, with a wavelength
of around 1000 nm, is scattered 40 times less than blue, with a wavelength of
around 400 nm [2]. The main conclusion about shadows one can make from this
phenomenon is the saturation of shadows with blue channel.

This phenomenon forms the basic assumption of color-related cues for shadow
detection proposed in the literature. HSV color space gives important informa-
tion on shadows. Since blue is the dominant channel in shadow regions, hue
channel appears with higher values; whereas saturation channel yields larger
intensities due to the saturation of shadows with blue; and value channel re-
sults with smaller terms as shadows appear darker. Several shadow maps have
been proposed on these assumptions [1,3,4]. As NIR light is scattered the least,
color-to-NIR ratios also give important cues on shadows [5].

False color transformation is defined as the use of near-infrared, red and green
channels to form a 3-channel image instead of red, green and blue channels.
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Hence, frequency spectrum of each channel of a 3-channel color image is shifted
towards lower frequencies. An image with its false color version can be examined
in Figure 1. Since Rayleigh scattering is more effective for high frequencies of
light, illumination on shadows is smaller in false color images and shadows are
expected to appear more characteristic. As the main contribution of this paper,
we propose the use of false color images, instead of regular red - green - blue
images, to improve the shadow segmentation performance.

(a) Original Image (b) False Color Image

Fig. 1. A satellite image and corresponding false color image

Apart from selection of an appropriate color space, another issue is to deter-
mine correct features for shadow detection. The main cue for shadows is that
shadows appear darker. When illumination is computed as the mean value of
three channels for each pixel in a color image, one should expect to have “more
darker” shadows in false color images compared to regular images. As another im-
portant property, shadows also have important textural characteristics [6]. Since
illumination is suppressed in shadows, they are expected to appear smoother
than their surroundings. Moreover, they differ from dark-colored objects, as dark
objects appear textureless. We also expect to have more characteristic textural
properties for shadows, when false color images are utilized.

In this effort, we test the effectiveness of proposed approach by utilizing several
features proposed in the literature for false color images. A system is constructed
to achieve the segmentation in a supervised manner by using a conventional
support vector machine classifier.

The document is organized as follows. A literature survey is presented in
Section 2. Utilized shadow-related cues are detailed in Section 3. Results are
shared and discussed in Section 4 and the work is concluded in Section 5.
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2 Related Work

Polidorio et al. [1] create the shadow map by using the difference between satu-
ration and value channels of HSV color-space image by exploiting the fact that
shadows have higher saturation with blue and violet wavelength due to atmo-
spheric scattering. When image channels are in the range [0-1], they threshold
the difference between saturation and value channels at zero for airborne sensors
and at 0.2 for orbital sensors to get the final shadow map. The values of these
thresholds are set globally, and unfortunately, performance of their algorithm
highly depends on these values. Vegetation and dark objects are often falsely
segmented as shadows in this approach.

Tsai [3] uses a hue based approach to identify shadows. By using the same
fact about high saturation of shadows with blue and violet colors, Tsai uses HSV
color space and assumes hue of shadow pixels will appear high to propose the
ratio map (R) seen in (1).

R =
Hue+ 1

V alue+ 1
where Hue, V alue ∈ [0− 1] (1)

This map is thresholded by Otsu’s method to compute the final shadow map.
However, Tsai’s method suffers from being unable to differentiate dark objects,
such as roads, from shadows, since hue is not very sensitive in darker areas.

Chung, Lin and Huang [4] modifies Tsai’s shadow map by using hue and value
components scaled to be in the range [0-255] and applying an exponential function
shown in (2) to the resultant ratio map to get the modified ratio map R′:

R′(x, y) =

⎧
⎨

⎩

exp

(

−
(

Hue(x,y)
V alue(x,y)+1 − TS

)2

/4σ2

)

∗ 255 if Hue
V alue+1 < TS

255 otherwise
(2)

where,TS is determinedby checking atwhichvalue ofTS the condition
∑TS

i=0 P (i) =
PS holds, in which P (i) represents the probability of the value i in the ratio image

histogram.PS is set to 0.95 empirically andσ is calculatedas

√
∑TS−1

i=0 P (i)i− TS
2.

They also apply Otsu thresholding to the image and continue with a successive
thresholding scheme. They dilate the resultant candidate shadow results by a 3x3
square structuring element and analyze each candidate region iteratively by using
a separability factor SB, and if SB is greater than a threshold, which is again set
empirically, the resultant region is marked as shadow.

Fredembach and Süsstrunk [5] propose the use of color-to-NIR ratios together
with a darkness map to identify shadows automatically. They define their tem-
porary darkness maps as in (3) and (4) by red, green, blue and NIR channels
that are scaled to be in the interval [0-1]. Then, relation in (5) is applied to the
temporary maps and final darkness map (D) is computed as in Equation 6.

DV IS = 1−
√
R2 +G2 +B2 (3)

DNIR = 1−NIR (4)
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f(x) =
1

1 + e−0.5(x−0.25)
(5)

D = f(DV IS)f(DNIR) (6)

The authors [5] integrate color information to the system by defining a Color-to-
NIR ratio image (F), shown in (7), and multiplying darkness and ratio maps to
get the final shadow metric (M, seen in (8)). This metric map is then binarized
by setting the threshold to the first valley in the histogram of the final shadow
map.

F = min

(

max

(
Red

NIR
,
Green

NIR
,
Blue

NIR

)

, 1

)

(7)

M = DF (8)

AlthoughColor-to-NIR ratios give important information on shadows, themethod
[5] might typically result in many falsely labeled shadow pixels, especially in aerial
and satellite images.

Finlayson, Hordley and Drew [7] remove shadows by a scalar function of a
three-channel image, which depends only on the reflectance of a surface. By
exploiting the fact that the shadow edges will appear on the regular image,
but not in the reflectance-only image, they use the edge map differences of two
images to locate shadows. One shortcoming of their approach is the necessity for
calibration of cameras. In order to derive the reflectance-only map, their method
needs camera calibration and this process needs multiple shots of the static scene
in different daylight conditions.

In a different approach, Zhu et al. [6] takes the challenge of segmenting shad-
ows from monochromatic images. They propose several textural features, some
of which are detailed here, to differentiate shadows from darker objects. The au-
thors [6] claim that smoothness is a shadow-variant feature, since shadows tend
to suppress local illumination changes due to low illumination, and hence, appear
as smoothed versions of their neighbors. Moreover, local maximum, computed in
3x3 neighborhood, is also an indicator of shadow regions. To differentiate dark
objects from shadows, they realize that most of the darker objects appear tex-
tureless and propose discrete entropy (E) as a near-black feature, computed by
the formula:

Ei =
∑

i∈w

−pilog2(pi) (9)

where w is 3x3 neighborhood of pixel i and pi is the probability of the histogram
counts at pixel i. They train their system using binary conditional random fields
and boosted decision trees and reach up to a high recognition rate. However, since
their approach does not utilize color information, the performance is limited.
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3 Shadow Cues

As the main shadow cue, one might use illumination that is computed as the
mean value of the three channels that form the image. Illumination of a regular
and a false color image can be seen in Figure 2. It can be easily observed that
shadows appear darker in the false color image.

(a) Original Image (b) Regular Illumination (c) False Color Illum.

Fig. 2. Illumination component in regular and false color images

As texture-based cues, entropy, smoothness and local maximum are utilized
as proposed in [6]. Entropy is calculated by (9). Smoothness is calculated by
taking the absolute difference between the original illumination scaled to be in
the range [0-1] and a Gaussian-smoothed version and subtracting the result from
1. Finally, local maximum is computed as the maximum illumination in a 3x3
neighborhood of each pixel. The resultant maps can be examined in Figure 3.

(a) Entropy (b) Smoothness (c) Local Maximum

Fig. 3. Texture-based shadow cue maps of the image in Figure 2a

As color-based cues, difference between saturation and value [1], as well as
the ratio between hue and value ratio are utilized. As a final, the relation in (1)
is also exploited [3]. The resultant maps are presented in Figure 4.

We also use the cue extracted from color-to-NIR ratios that are proposed in
[5]. F metric, containing information about only color-to-NIR ratios (see (7)),
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(a) Sat - Value Difference (b) Hue - Value Ratio (c) Tsai’s Cue

Fig. 4. Color-based shadow cue maps of the image in Figure 2a

(a) F metric (Equation 7) (b) M metric (Equation 8)

Fig. 5. Color-to-NIR ratio-based cue maps of the image seen in Figure 2a (The results
are stretched to [0-255] scale for visualization)

and M metric, the main shadow map proposed (see (8)), were used in the tests.
Corresponding maps can be seen in Figure 5.

4 Results

The tests are conducted by training the support vector machine classifier using
a total of 400 marked shadow and non-shadow samples and quantitative results
are result of a 500x500 test image. These images are obtained from the satellite
IKONOS at 1-meter resolution.

In order to measure performance, we use precision and recall metrics. Pre-
cision, defined in (10), measures the percentage of the successfully classified
shadows in the true shadow pixels, where recall, defined in (11), yields the per-
centage of the successfully classified shadow pixels among all that are classified as
shadow. The performance is high when both metrics are as close to one hundred
as possible.
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Table 1. Feature Performances

Features RGB False-Color

(w/ Illumination) Precision Recall Precision Recall

Entropy 97.3 93.9 98.8 96.1
Smoothness 89.4 96.9 97.0 97.9
Local Max 92.2 97.0 97.8 97.8
Sat - Val Difference 88.8 95.9 93.6 98.6
Hue - Val Ratio 81.0 94.6 95.7 97.7
Tsai’s Ratio 94.9 96.3 95.7 97.1
F 96.5 98.4 97.3 98.3
M 96.7 98.4 97.3 98.3
Entropy and M 98.4 97.5 98.7 97.2

Precision (%) =
True Positive

T rue Positive+ False Negative
∗ 100 (10)

Recall (%) =
True Positive

T rue Positive+ False Positive
∗ 100 (11)

In these relations, True Positive denotes the true shadows that are classified
successfully, False Negative denotes the true shadows that were erroneously
classified as non-shadow and False Positive denotes the true non-shadow pixels
that are erroneously classified as shadows.

We trained and tested our system by using illumination together with each
one of the selected features for both RGB and false color images. Performance
of each feature can be seen in Table 1.

Notice that for each metric, performance increases with the use of false color
image. Textural features and use of color-to-NIR ratios appear to be superior to
HSV color space based features.

Next, we combine the most successful texture-based feature, entropy, and the
most successful color-based feature, M, to achieve a better performance. The
maximum performance we could obtain is 98.7 precision and 97.2 recall by the
use of illumination, entropy and M in false color.

Our test system can easily be utilized as a shadow recognition system ini-
tialized with minimal user interaction. Especially in false color, as shadows and
non-shadows are easily and linearly separable in the constructed system, with
minimal user interaction in one of the images in a database, an effective classifier
can be constructed. Figure 7 shows shadow segmentation results in several other
images in the same database as the image where the classifier was trained.

The results of the algorithms by Polidorio et al. [1], Tsai [3], Chung et al.
[4] and Fredembach and Süsstrunk [5] together with the results of the proposed
algorithm can be observed in Figure 6. The performance of the cited algorithms
are presented in Table 2. As large regions, such as roads, are segmented falsely
as shadows in Tsai’s and Fredembach’s algorithms, they come up with lower
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(a) Ground Truth (b) Our Result (c) Polidorio et al. [1]

(d) Tsai [3] (e) Chung et al. [4] (f) Fredembach and
Süsstrunk [5]

Fig. 6. Shadow segmentation results of various algorithms

Table 2. Performances of various algorithms

Algorithm Precision Recall

Polidorio et al. [1] 82.4 97.8
Tsai [3] 53.7 99.5
Chung et al. [4] 78.4 99.1
Fredembach and Süsstrunk [5] 53.3 97.9
Proposed 98.7 97.2

precision values. Polidorio’s and Chung’s algorithms perform better; however,
as some regions, such as vegetation, are falsely segmented as shadows in these
approaches, the precision values are not high. The proposed approach results in
quite high precision compared to aforementioned approaches, since challenging
regions, such as roads and vegetation, could be eliminated in three dimensional
space by a linear classifier. Achieving such a high precision might result in slight
decrease in recall.
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Original Images

Results by Polidorio et al. [1]

Results by Chung et al. [4]

Our Results, using Entropy, M and Illumination in False Color (System is trained
from the same 400 samples taken from the image in Figure 2a)

Fig. 7. Shadow segmentation results of various algorithms in several images
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5 Conclusion

This paper proposes the use of false color images for efficient segmentation
of shadows. This claim is tested by using a supervised approach with several
shadow-related features and it is shown that for any of the utilized features, use
of false color images increases performance remarkably. Moreover, a supervised
approach to segment shadows is also proposed and shown to be effective and
superior to other state-of-the-art approaches.
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