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In this supplementary document, we present (i) extended qualitative analysis
and discussion in Section A and in Figures 2 and 3, and (ii) extended discus-
sion and a pseudo-code for the multi-resolution refinement process in Section B.
Additionally, we show a visualization of our attraction and repulsion term from
Section 3.4 for the three-dimensional case in Figure 1.

Fig. 1: We visualize the functionality of our attraction and repulsion losses exemplary
on a 3D sphere. The features in this simple scenario form two bundles, concentrated
around Target 1 (dotted blue) and Target 2 (dotted red). La attracts features corre-
sponding to Target 2 closer towards its main orientation line, while Lr pushes other
features further away and towards Target 1.

A Qualitative Analysis

We extend the quantitative experiments from our main paper with a set of
qualitative comparisons. We demonstrate the generalization capability of our
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approach on images in the wild and provide qualitative examples for the difficult
cell-segmentation task.

A.1 Qualitative Analysis in-the-wild

We show comparisons on a wide variety of in-the-wild images in Figure 2. We
have named each example for easy referral. There are several interesting conclu-
sions we can make about the limited generalization of top-down approaches.

The Strawberries example represent arguably a very easy image for segmen-
tation, being composed of distinct repetition of simple objects. Despite the sim-
plicity of the input, we observe that other methods fail to successfully segment
the images, some producing a single segment for foreground or background, some
only segmenting parts of the strawberries, and others not generating any seg-
ments. Apart from our method, only Segment Anything [3] with the small ViT-B
encoder successfully segments the strawberries, but over-segments the silhuette
image due to color differences in the foreground. The Wall example is another
simple image to segment, only complicated by the shadows of the palm trees. We
again see a similar behavior of generating a single background segment, overseg-
menting or no segment at all from others. While this can be explained by the
lack of strawberry, or window blind classes in the training datasets of panoptic
segmentation methods, the class-agnostic approaches by Qi et al . [7] and Qi et
al . [6] also perform similarly. We believe that this demonstrates the limited gen-
eralization ability of top-down approaches for image segmentation when trained
on standard class-based datasets.

The Cars example shows a sleigh and reindeers in the middle of a road full
of cars. We see that panoptic segmentation methods end up missing the unusual
objects in the scene, while class-agnostic methods are able to segment Santa’s
ride. Kirillov et al . [3] misses the sleigh but is the only method that provides
segments for the intricate car windows and rear lights.

Despite the variety in the style and complexity of the input images, our
bottom-up approach is able to differentiate the objects in the scene, demon-
strating our generalization ability. In some cases such as in the Painting example,
while detecting most of the entities in the scene, it fails to differentiate between
some of the walnuts, showing similar performance to Kirillov et al . [3].
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Fig. 2: We show the results of our method on images in the wild in comparison
with [7], [9] [1], [2], [4], [6] and [3]. Please refer to Section A.1 for discussion.
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A.2 Qualitative Results on Cell Segmentation

Additionally, we provide example results for cell and nucleus segmentation on
the EVICAN dataset [8] in Figure 3. Note that none of the baselines that we
compare against publicly share their code. Instead, we compare our results with
the provided ground truth annotations in the dataset. Our method manages to
segment the cells and nuclei from the three difficulty levels well. Even for chal-
lenging low-contrast input images such as in the middle row or for cell clusters
as in the top row, the segments closely match the ground truth annotations.

Fig. 3: We show example images from EVICAN [8] with our results in comparison
with the ground truth from the hard (upper row), the medium (middle row) and the
easy subset (lower row).
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Fig. 4: For a complex scene, the initial estimation in (a) contains merged segments
and inaccurate boundaries. Inputs at higher resolution in (b) retrieve more intricate
details that can interatively be merged as shown in (c).

B Multi-resolution refinement

For class-agnostic segmentation, the behavior of the network at different resolu-
tions directly corresponds to the context within the receptive field. As Figure 4
shows, when looking at the entire image, the meaningful regions roughly corre-
spond to the shelf units in the upper row and the plates and the entire stack of
waffles in the lower row. At higher resolutions, though, as the network focuses
on local regions, the context changes, and the contents of the shelf units can be
separated into individual objects. For the waffles, we even retrieve the cherries
on top. This is similar to how humans divide the scene they are looking at into
meaningful regions.

We hence employ a multi-resolution refinement process at inference. Starting
at the receptive field size of the network, we increase the input resolution by
a factor of 1.25 until we reach the maximum resolution that is likely to result
in over-segmentation. We adopt the gradient-based ideal input resolution R20
from [5] to estimate this maximum level on a per-image base. For every inference
step, we generate labels via mean-shift clustering and compare them with the
root segments. At an IoU > 0.85, we assume that both segments are identical
but the old segment is likely less accurate and hence replaced by the new one.
We assume a merging error if the old segment is covered by more than 50%
but the new segment is not, in which case we disregard the new one. If the new
segment is covered by more than 50%, we assume it’s a child and recursively
repeat the comparison with all previously detected children to find the direct
parent. Algorithm 1 shows the pseudo-code for this procedure.
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Algorithm 1 Multi-Resolution Refinement Process
1: Input: Network with initial receptive field size, Image
2: Output: Refined segmentation
3: currentR← initial receptive field size
4: maxR← Ideal input resolution R20 [5]
5: while currentR ≤ maxR do
6: Perform inference at currentR
7: Generate labels using mean-shift clustering
8: Compare labels with root segments
9: for each pair (root, new) do

10: iou← IoU(root, new)
11: coverageRoot← iou/Area(root)
12: coverageNew ← iou/Area(new)
13: if iou > 0.85 then
14: root← new
15: else if coverageNew < 0.5 then
16: if coverageRoot > 0.5 then
17: delete(new)
18: end if
19: else
20: recursively compare against children
21: assign to direct parent
22: end if
23: end for
24: currentR← currentR ∗ 1.25
25: end while
26: return Refined segmentation
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