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Fig. 1: We introduce a bottom-up approach to class-agnostic image segmentation. We
show that our formulation leads to generalization to images in-the-wild that are not
well-represented in common training datasets. We generate detailed segmentation maps
for complex scenes where other class-based or class-agnostic approaches fall short.

Abstract. Class-agnostic image segmentation is a crucial component in
automating image editing workflows, especially in contexts where object
selection traditionally involves interactive tools. Existing methods in the
literature often adhere to top-down formulations, following the paradigm
of class-based approaches, where object detection precedes per-object
segmentation. In this work, we present a novel bottom-up formulation
for addressing the class-agnostic segmentation problem. We supervise our
network directly on the projective sphere of its feature space, employ-
ing losses inspired by metric learning literature as well as losses defined
in a novel segmentation-space representation. The segmentation results
are obtained through a straightforward mean-shift clustering of the es-
timated features. Our bottom-up formulation exhibits exceptional gen-
eralization capability, even when trained on datasets designed for class-
based segmentation. We further showcase the effectiveness of our generic
approach by addressing the challenging task of cell and nucleus segmen-
tation. We believe that our bottom-up formulation will offer valuable
insights into diverse segmentation challenges in the literature.
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1 Introduction

In most image editing scenarios, object selection is the first step for localized
image editing or compositing. Automating the object selection, hence, is an
interesting application scenario for increased productivity. A generalized object
selection method requires the segmentation of every object in any image in the
wild. This is a challenging task that standard class-based image segmentation
approaches such as semantic or panoptic segmentation fail to accomplish due to
the inherently limited number of classes labeled in a training dataset.

With this motivation, recent literature focuses on the class-agnostic segmen-
tation problem. Open-set panoptic segmentation [25,63] approaches this problem
by extending the label space in panoptic segmentation with an unknown class,
aiming to detect objects that do not fit in the set of defined classes. Open-world
entity segmentation [51, 52], on the other hand, defines the segmentation prob-
lem as fully class-agnostic, and presents a method that can detect object centers,
which are then used to create the final segmentation map. Segment anything [33]
adopts a prompt-based approach and conducts class-agnostic segmentation by
assuming a regular grid of user inputs, powered by an extensive dataset.

All these approaches follow a top-down approach to segmentation, where the
first task of the system is to detect the objects in the scene, followed by per-object
segmentation. This top-down approach is in contrast with our understanding of
human cognition. Humans can easily identify objects or coherent regions in a
wide variety of realistic or abstract, complex or simple images. The dominant
process in human object detection is modeled to be bottom-up [4], where grouping
of features in the scene is followed by object detection and finally classification.

In this work, we present a novel approach to class-agnostic image segmen-
tation with a bottom-up formulation. We adopt the entity definition by Qi et
al . [52] that unifies things and stuff into classless entities. We develop our formu-
lation in a feature space with projective geometry, generating per-pixel features
that are parallel to each other within the same entity, and orthogonal to all fea-
tures outside their entity. This allows for maximally separated entities that can
conveniently be clustered with simple mean-shift clustering for a dense class-
agnostic segmentation during inference. We achieve this with a loss combination
inspired by metric learning and a novel segmentation-space formulation that
allows for the backpropagation of segmentation-focused losses into our hyper-
dimensional feature space.

Our formulation is carefully developed for generalization to class-agnostic
only through class-based datasets. Despite using the standard segmentation
datasets MS COCO [5,40], ADE-20k [66], and CIHP [21] as our only real-world
training data, our bottom-up approach shows an exceptional generalization abil-
ity to unseen classes as well as out-of-distribution images as Figure 1 shows.
We demonstrate the performance of our system through zero-shot quantitative
analysis. Despite utilizing a smaller architecture, we show that we can generate
detailed segmentations for complex scenes in the wild. We further demonstrate
the generic nature of our bottom-up formulation by improving upon the state-
of-the-art in cell and nucleus segmentation.
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2 Related Work

The field of automatic image segmentation is dominated by class-based object
labeling approaches [6,9,11,13,14,18,24,31,32,37,43,54,56,59,60]. These methods
are trained to recognize objects from a fixed set of known classes and assign pixel
labels accordingly. Depending on the application scenario, the algorithms are
either identifying semantics alone [9,43,54], distinguishing individual instances of
countable objects [6,18,24,56,59,60], or combining both in a panoptic fashion [11,
13,14,31,32,37]. Their inherent inability to generalize to unseen classes, however,
makes them less suitable for use in image editing. We focus on class-agnostic
segmentation below and refer to the recent survey [47] for an in-depth review.

Class-agnostic Image Segmentation Recently, a growing number of segmenta-
tion approaches [25, 50–52, 63] are removing class dependency to handle out-of-
distribution objects and improving generalization: Open-set panoptic segmen-
tation methods [25, 63] on the one hand are still closely following the concept
of panoptic segmentation but introduce an additional class to the training set
to label unknown elements. Once identified, the corresponding areas are further
segmented via class-agnostic clustering based on predicted bounding boxes.

Entity-segmentation methods [50–52] on the other hand entirely remove se-
mantic information from the training process, treating each object in the dataset
as a unique entity. Qi et al . [52] first introduce this concept by replacing the su-
pervision from a proposal-based segmentation approach [56] with class-agnostic
masks. They show how this change alone results in increased generalization ca-
pability and further adapt the concept in subsequent work for pretraining in
class-based segmentation [50] and to generate high-resolution results [51]. Both
works formulate segmentation in a top-down fashion, incorporating a proposal
generator to predict bounding boxes [50] or entity centers [51]. This limits their
generalization ability to objects that do not match the training distribution in
appearance. In contrast, we construct our method as a bottom-up framework
based on object discrimination that generates segments by clustering on the
hypersphere and is independent of the exact appearance.

Segment anything [33] takes inspiration from prompt-based natural language
processing approaches and formulates the segmentation problem with various
forms of input. For the class-agnostic problem akin to entity segmentation, they
assume a regular grid of input prompts to generate their dense output and
demonstrate a strong generalization ability enabled by their immense dataset.
One major shortcoming of prompt-based methods is the dependence on very
large training datasets, which limits their applicability to other domains where
collection of such datasets is prohibitively expensive such as commercial appli-
cations, medical image segmentation, and fine-grained segmentation.

Our bottom-up approach, on the other hand, is designed to leverage small
or incomplete datasets while still achieving generalizability. We achieve similar
performance to the segment anything model with similar number of parameters
to ours, despite them training on a dataset that is larger than ours by 2 orders of
magnitude. We also achieve state-of-the-art performance in cell and nucleus seg-
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mentation compared to domain-specific approaches, demonstrating the generic
use of our bottom-up formulation in problems with limited training data. Our
representation-based metric learning approach can further be integrated into fu-
ture prompt-based approaches to improve their performance in problems where
large-scale data acquisition has inherent challenges.

Entity Representation in Projective Space Object discrimination is a long-
existing concept in image processing in the form of clustering-based methods [15,
28, 44, 49, 57, 64] and is recently being revisited by instance segmentation ap-
proaches with the goal to distinguish individual instances within an already
recognized “thing”-category [2, 11, 16, 19, 34, 58]. In this constrained setting, the
prediction accuracy can be greatly increased by computing affinities on high-
dimensional features instead of pixels and applying contrastive losses as class-
agnostic supervision. For panoptic segmentation, the bottom-up approach is
challenging since the combination of different elements within the same “stuff”
ground truth category creates ambiguities, and so far only combined approaches
have been proposed with bottom-up “thing” discrimination and top-down seg-
mentation for “stuff” [11]. We argue that a careful definition of the feature repre-
sentation and supervision space is crucial for bottom-up panoptic segmentation.

We formulate our supervision thus on the projective sphere, a hypersphere
with antipodal equivalence. Non-euclidean representations have seen growing
attention in grouping tasks due to the inherent hierarchical properties in hy-
perbolic space [1, 8, 20, 30, 38, 48, 61] and intuitive metric learning on the hyper-
sphere [10, 23, 26, 34, 67]. In line with works by Kong et al . [34] and Hwang et
al . [26], we use cosine similarity to define a metric on the projective sphere. By
supervising directly in this feature space, we yield an entity-specific representa-
tion that allows us to ignore ambiguous background regions during training and
to apply simple mean-shift clustering during inference.

3 Generating Distinguishable Features

We approach the class-agnostic image segmentation problem by looking back at
the most basic definition of image segmentation. Our aim is to generate an image
representation that allows us to cluster the pixels in the image into segments that
correspond to different entities. For this purpose, we formulate our training and
inference scheme purely in our projective spherical feature space using losses
inspired by contrastive learning. We also define a low-dimensional segmentation
space that allows us to signal clustering performance to the network during
training. We show that our features can be used to segment the image using a
simple mean-shift clustering formulation.

3.1 Feature Representation

We define our feature space as the real projective sphere. This means that it
resembles a hyper-dimensional sphere of radius 1, where each feature - encoded
through unit homogeneous coordinates - forms a point on the surface, and points



A Bottom-Up Approach to Class-Agnostic Image Segmentation 5

on opposite sides of the sphere are equivalent. Because of the equivalency, these
points resemble lines through the origin in d-dimensional space, a concept that
also better illustrates our representation’s focus on angle distance, parallelism,
and orthogonality. Our feature space is thus defined as F :

F = {f ∈ Rd : ||f ||2 = 1,f = −f}, (1)

and we endow it with a distance metric defined as the cosine distance between
two lines:

dist(f1,f2) = 1− |f1 · f2|. (2)

Given this setup, we want features corresponding to pixels from the same ob-
ject to be parallel, and features from different objects to be orthogonal. This is
a powerful formulation with a continuous and piece-wise differentiable distance
function between any two features. It allows for up to d objects with features
maximally far apart. This is in contrast to setups that use directions [34] or
bounded points [2] as features rather than lines, where there is only a single max-
imally distant feature to any other. The desired orthogonality of features from
different segments plays a crucial role in defining our low-dimensional segment-
space representation and in handling training data with incomplete labels, as we
discuss later in this section. The output of our network is defined as a h×w× d
dimensional feature map, h and w being the height and width of the input image
and we set d to be 128. We normalize the estimated features to unit length to get
our per-pixel features f ∈ F . During training, we also define an L2 regularization
loss that signals our network to generate unit-length features:

Lu =
∑
i

|1− ∥f i∥2|. (3)

3.2 Determining Target Lines for each Entity

We aim to generate a feature for every pixel such that the feature of a pixel
is parallel to others that belong in the same entity, and orthogonal to the ones
that belong in others. This goal is shared with many standard metric or affinity
learning formulations [3, 22, 34]. However, defining a loss function on all the
inter-pixel affinities quickly becomes prohibitively expensive due to the quadratic
explosion of the N ×N possible pixel pairings, N = h× w.

Instead, we first determine target lines for each entity during training and
define losses that align each pixel’s feature with its corresponding entity, while
pushing it away from all other target lines. This simplifies our optimization
problem from a many-to-many comparison setting to many-to-few. We will also
use target lines to define our segmentation-space as described later in this section.

For each entity available in the ground-truth, we calculate the target line
using the predicted features of all the pixels that belong to that entity. For
homogeneous coordinates, euclidean averaging of the features may result in a
degenerate average. Instead, we compute the average orientation µk through

µk = argmax
v

vTMkv, Mk =
∑
i∈Ek

f if
T
i , (4)
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where Ek is the set of pixels belonging to the ground-truth entity k. The solution
of this maximization problem is given by the eigenvector of Mk corresponding
to its largest eigenvalue. In line with our feature space definition in Eq. 1, µk

is of unit-length and changing its sign, or the sign of any f i does not affect the
result. Markley et al . [45] presents a comprehensive exposition of this orientation
averaging approach in the case of quaternions.

3.3 Handling Imperfect Ground-truth

Most large-scale datasets with annotated ground-truth segmentation have been
collected for class-based segmentation approaches such as semantic or panoptic
segmentation. Due to the inherently limited set of classes a dataset contains,
many objects that are not in one of the pre-defined classes are not segmented
but either included in a general background category or just lack any label.
Due to the complexity of annotating every single object in an image, even the
class-agnostic SA-1B Dataset [33] contains many unlabeled objects.

As the goal of our class-agnostic segmentation approach is to generalize to any
object, we can not treat the background category as its own entity. There may
be multiple objects in the background category and without individual ground-
truth labels, we can not determine a target line to align all the pixels. However,
as an ideal representation in our feature space has orthogonal lines for each
entity, we know that we want all the features in the background category to be
orthogonal to the target lines µk for all known entities in the image. Hence, when
formulating our loss functions, we will exclude the background category for all
losses promoting alignment and include them in ones that promote orthogonality.
This way, we promote features in the background that are distinguishable from
the known entities while not punishing the network for correctly estimating
entities that are not annotated in the ground-truth.

Due to the complexity of annotating many segments with pixel-perfect pre-
cision, segmentation datasets often have boundary inaccuracies in the ground-
truth labels. As a result, including the possibly inaccurate boundaries in the
loss formulation harms the boundary accuracy of the system. To address this,
we erode all the ground-truth annotations with a 5 × 5 kernel and exclude the
eroded-away pixels from all loss computations.

3.4 Attraction and Repulsion

To align the features of the pixels that belong in a single entity to their target
line µ, we define a simple attraction loss:

La =
1

K

∑
k

1

|Ek|
∑
i∈Ek

(1− |f i · µk|) , (5)

where K is the number of labeled entities in the image. Rather than pairwise
aligning all features, this simple loss pulls every pixel in an entity towards align-
ment with the same target line.
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Fig. 2: We show our resulting feature map in (a), reduced with PCA and colorized for
visualization. Our projection into the segment space results in a set of binary maps in
(b) that are compared against the ground-truth in (c) via our segmentation loss.

Similarly, we define a repulsion loss that pushes every pixel to be orthogonal
to the target lines of other entities:

Lr =
1√

K + 1

LBG
r +

∑
k

1

|Ek|
∑
l ̸=k

∑
i∈Ek

|f i · µl|

 (6)

As noted in Sec. 3.3, using an average orientation µBG of the background
features, we include the background pixels in the repulsion loss:

LBG
r =

∑
k

1

|Ek|
∑
i∈Ek

|f i · µBG|+
1

|BG|
∑
i∈BG

∑
k

|f i · µk|,

that pushes the pixels in the background category to be orthogonal to all entity
target lines, as well as the features in known entities to be orthogonal to the
primary background orientation. We found that normalizing the repulsion loss
with K +1 makes it ineffective for images with many segments. Instead, we use√
K + 1, providing a good balance for images with few or many entities.

During training, our network may fail to differentiate between two different
entities and generate similar features for both. In such a case with µk ≈ µl,
the attraction and repulsion losses cancel each other. This results in a lack of
a loss that signals the network to separate the two entities from each other. To
promote separation between entities, we add the sparse regional contrast loss
Lrc introduced by Liu et al . [41] as a second contrastive supervision, empirically
setting the temperature τ = 0.5 and using 256 queries per entity.

3.5 Segment-space Representation

In order to directly evaluate the clustering performance of the generated fea-
tures, we compute per-entity segmentation maps by defining a smooth linear
transformation from our feature-space to what we call the segment-space. Given
K known entities excluding the background, we define segment-space as the
(K − 1)-dimensional projective sphere, as represented by the unit sphere in RK

with µk serving as basis vectors. We define a dimension-reducing linear trans-
formation matrix P from feature-space to segment-space such that segment k is
represented by the kth unit vector ek:

Pµk = ek ∀k (7)
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Fig. 3: Two predictions from early training phases, (a) with only contrastive supervi-
sion and (b) with our segmentation loss added.

which we compute as the left-inverse of the matrix A = [µ1 µ2 · · · µK ] so
long as such an inverse exists. In the case that the network fails to differentiate
between two entities during training, i.e. µk ≈ µl for any k and l, the solution
becomes degenerate. In such cases, we exclude our segmentation-space losses
from back-propagation4. By transforming the feature vectors for each pixel to
this sub-space with P · f i,∀i, we get a h × w map with k channels where the
absolute value of the kth channel is a real-valued map in [0, 1] that represents
the alignment of each feature to µk. We will denote each channel in our segment-
space with Sk. As the transformation P makes all target lines orthogonal, the
losses we define in the segment-space are amplified within the space between any
not-yet-orthogonal µk and µl. This helps sort out features between entities that
are not yet fully differentiated. As all background features should be orthogonal
to all entities, their features should lie squarely in the null-space of P and their
projections can be pushed towards 0.

As we aim to estimate features f i that are aligned to µk for i ∈ Ek and or-
thogonal for i /∈ Ek, the ground-truth for Sk, which we denote as Ŝk, is the binary
ground-truth segmentation map for the kth entity. We define our segmentation
loss as the mean-squared error over each channel together with a gradient-based
loss defined over multiple scales [36] to enforce spatial smoothness:

Ls =
1

K

∑
k

MSE
(
Sk, Ŝk

)
, Lg =

1

K

∑
k

∑
m

MSE
(
∇Sm

k ,∇Ŝm
k

)
, (8)

where ∇Sm
k is the spatial gradient of Sk at the mth scale. We visualize the pro-

jection and segment supervision in Figure 2. Transforming our features into our
segment-space representation allows us to use this standard multi-scale gradient
loss defined on single channels for promoting spatial consistency in our hyper-
dimensional features that lie in projective space by back-propagating this loss
through the linear mapping P . We show the effect of our segmentation loss in Fig-
ure 3 on the outputs of two toy networks after 8 epochs in training, one of which
is trained exclusively on our contrastive losses, the other with the addition of the
segmentation and multi-scale gradient losses. The contrastive losses enable the
network to distinguish visual elements, while the additional segmentation losses
enforce smooth features and turn the clusters into meaningful segments.
4 These cases appear in less than 0.02% of iterations during early stages of training

and their frequency drops with further training.
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3.6 Network Architecture and Training

We define our final loss function as:

L = La + Lr + Ls + λrcLrc + λgLg + λuLu, (9)

where λrc, λg, λu are set to be 0.125, 0.025, and 0.05, respectively. We employ
the encoder-decoder architecture proposed by [62] as our feature generator, but
replace the encoder with the base ConvNext [42] as the backbone. Following
Ranftl et al . [53], we add four chained RefineNet [39] modules as decoder block,
followed by three convolutional layers to upscale the features back to the input
size. A final tanh activation generates the output features.

4 Inference-time Clustering

Our network is designed to generate pixel features that are aligned together for
pixels that belong to a single entity. Our training process involves utilizing repul-
sion and segmentation losses to ensure that features associated with a specific
entity are orthogonal to those of other entities. This per-pixel representation
effectively distinguishes between different objects, facilitating the application of
a simple clustering method for segmentation.

In our approach, the classical mean-shift clustering method aligns seamlessly
with our mean-based representation. Specifically, we apply mean-shift clustering
on the d-dimensional hyper-sphere with a bandwidth set to

√
2
2 , representing

a 45° separation. This choice leverages the orthogonal inter-entity features to
cluster the image into distinct segments.

4.1 Multi-resolution Refinement

In our proof-of-concept implementation, we leverage a simple convolutional neu-
ral network (CNN) for its effectiveness in achieving robust training, even with
small datasets, rendering it well-suited for our application. The inherent limita-
tion of CNNs, where their reasoning capability is confined to the size of their
receptive field, manifests in coherent outcomes at this resolution. However, as
demonstrated in other mid-level vision tasks [7, 46], the capacity to generate
intricate details significantly improves when inference is conducted at higher
resolutions. This enhancement, however, comes at the cost of global coherency,
as at higher resolutions, the network can only reason about small patches in the
image at once, over-segmenting larger ones.

To capitalize on the consistency at smaller resolutions and the capacity to
generate intricate segmentations at higher resolutions, we implement a multi-
resolution clustering strategy. This involves feature generation and mean-shift
clustering at multiple resolutions. The final segmentation map is constructed by
processing segments from the smallest resolution first. With each increasing res-
olution, we incorporate clusters contained within existing segments in our map.
New segments with a very high overlap with an old segment represent a refined
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version of the same segment with higher boundary accuracy, while segments
that subdivide existing segments reveal smaller objects detected in the image.
Our low-to-high resolution cluster merging strategy enables the generation of
highly detailed segmentation maps in in-the-wild images with varying contexts.
We provide a detailed description of our multi-resolution refinement approach
in the supplementary material.

5 Experiments

We train our model for 60 epochs with a learning rate of 1 × 10−5. We use
ImageNet [17]-pretrained weights for the encoder and train all other modules
from scratch. We use the class-based COCO Panoptic [5], ADE20K [66], and
CIHP [21] datasets as well as procedurally generates images of simple geometric
shapes for training. We give a detailed description of our training process and
extend our experimental analysis in the supplementary material.

Class-agnostic Baselines We evaluate our method against recent class-agnostic
segmentation methods Open-World Entity Segmentation (OWES) [52], High-
Quality Entity Segmentation (HQES) [51], and the Segment Anything (SAM)
model [33] with the smaller ViT-B encoder as it has a similar number of param-
eters to ours. Our method and OWES [52] use common class-based datasets as
real-world training data. HQES [51] trains solely on their novel high-resolution
class-agnostic dataset of 600K annotations in 33K images targeting high recall
in-the-wild. SAM [33] trains their model on their novel large-scale dataset of 1B
annotations in 11M images in addition to the common class-based datasets.

Class-based Baselines We also include several panoptic segmentation meth-
ods in our analysis, namely OneFormer [27] and Mask2Former [13] as task-
unifying segmentation approaches, MaskDINO [35] being optimized for object
detection, and kMaX-DeepLab [65] inspired by k-means clustering. As class-
based approaches do not allow for training with multiple datasets due to class
definition conflicts, we use their models trained on ADE20k [66].

Metrics We compute Recall as a measure of completeness, treating every seg-
ment as a true positive that has an IoU > 0.5 with a ground truth segment.
Recall being a critical measure of performance for class-agnostic evaluation, we
also report the percentage relative improvement ∆% of all methods with respect
to the baseline with the lowest recall. As a measure of segmentation accuracy, we
use the standard mask-based intersection-over-union (IoU) metric as well as the
Boundary IoU metric [12] that focuses on boundary accuracy of the segments.
The class-agnostic segmentation methods including ours, OWES [52], HQES [51],
and SAM [33], will naturally generate segments that may not be included in the
ground-truth maps, as it is very challenging to annotate every object in every
scene. This makes the evaluation over false positives not a meaningful metric for
this task, hence we exclude it.
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5.1 Evaluation over a Class-based Train/Test Split

Class-agnostic segmentation aims to generalize to objects of any class, charac-
teristically being trained on multiple class-based datasets or large class-agnostic
datasets. Class-based segmentation, on the other hand, focuses on a specific
set of classes in a fixed domain of images. In order to measure the effect of
class-agnostic generalization on the performance on known classes, we present
an evaluation in the domain of class-based segmentation methods using the test

Table 1: Evaluation on ADE20k [66]
Method Architecture-#Params mIoU↑ B. IoU ↑ Recall↑ ∆%↑
kMaX-Deeplab [65] ConvNext-L - 244m 0.366 0.332 0.376 0
MaskDINO [35] Swin-L - 223m 0.373 0.340 0.387 3
Mask2Former [13] Swin-L - 216m 0.413 0.375 0.430 14
OneFormer [27] Swin-L - 219m 0.455 0.418 0.484 29
OWES [52] Swin-L - 208m 0.400 0.357 0.420 12
Ours - base res. ConvNext-B - 101m 0.380 0.327 0.391 4
Ours ConvNext-B - 101m 0.462 0.407 0.494 31

split of ADE20K [66] in Ta-
ble 1. All methods in Ta-
ble 1 use the training split of
ADE20K in their training.

Our method with the
multi-resolution refinement per-
forms on-par with the class-
based OneFormer [27] despite
our smaller architecture, with
a slight improvement in recall.
This shows that our clustering-based bottom-up approach does not lead to a
drop in performance on known classes. We see a drop in performance for the
class-agnostic baseline OWES despite it having seen these classes during train-
ing, pointing to the mixed dataset training in top-down approaches having an
adverse effect in domain-specific scenarios.

5.2 Zero-shot Class-agnostic Evaluation

Reflecting the in-the-wild generalization motivation of class-agnostic segmen-
tation, we perform zero-shot evaluations on two recent class-agnostic datasets
EntitySeg [51] and SA-1B [33] that are characterized by their high number of
class-agnostic annotations per image and high-resolution input images. As these
datasets were used to train the models of HQES [51] and SAM [33], respectively,
we exclude these methods from corresponding tables.

We present our evaluation on the first subset of the SA-1B dataset [33] in
Table 2. We use the first 1000 images in the dataset for general performance, and

Table 2: Zero-shot evaluation on SA-1B [33]
Method General performance High object count

mIoU↑ B.IoU ↑ Recall↑ ∆%↑ mIoU↑ B.IoU ↑ Recall↑ ∆%↑
Mask2Former [13] 0.318 0.306 0.326 0 0.263 0.285 0.274 0
OneFormer [27] 0.335 0.339 0.342 5 0.294 0.357 0.305 11
kMaX-Deeplab [65] 0.337 0.337 0.344 6 0.295 0.338 0.308 12
MaskDINO [35] 0.341 0.340 0.348 7 0.316 0.364 0.329 20
OWES [52] 0.356 0.338 0.370 14 0.349 0.380 0.366 34
HQES [51] (CF/Swin-L/217 m) 0.398 0.418 0.411 26 0.384 0.448 0.401 46
Ours 0.457 0.424 0.500 53 0.480 0.460 0.529 93

also create a different split
of 500 images with the high-
est number of annotated ob-
jects in the set to measure the
true positive rates in complex
scenes. As Table 2 demon-
strates, we significantly im-
prove over class-agnostic ap-
proaches OWES and HQES,
doubling the improvement in recall of second-best HQES with respect to the
Mask2Former [13] baseline. Our performance comes despite our smaller architec-
ture as well as the high-resolution class-agnostic dataset collected to train HQES
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for in-the-wild generalization. This shows the effectiveness of our bottom-up ap-
proach in generating a class-agnostic understanding of objectness from class-
based datasets. We observe an expected drop in performance for class-based
approaches, as class-agnostic datasets naturally contain many objects that are
outside the list of classes for which these networks are trained.

Table 3 presents our evaluation on the EntitySeg dataset [51]. We perform

Table 3: Zero-shot on EntitySeg [51]
Method mIoU↑ B. IoU ↑ Recall↑ ∆%↑
OneFormer [27] 0.409 0.382 0.423 0
Mask2Former [13] 0.452 0.403 0.474 12
MaskDINO [35] 0.463 0.423 0.482 14
kMaX-Deeplab [65] 0.488 0.455 0.524 24
OWES [52] 0.521 0.470 0.566 34
SAM [33] 0.585 0.539 0.619 46
Ours 0.574 0.522 0.614 45

on-par with SAM [33] despite their use of
a class-agnostic dataset that is larger than
our training set by two magnitudes. This
demonstrates that our carefully designed
clustering-based approach is highly effec-
tive in generalizing to in-the-wild images
without the need for a large-scale dataset.

Earlier attempts at class-agnostic seg-
mentation [25, 52, 63] focused on develop-
ing classless formulations and trained on
available class-based datasets. This focus shifted to the collection of high-quality
and large-scale datasets in recent literature [33,51] due to the straightforward ef-
fectiveness of a well-crafted training dataset in generalization despite their cost.
Our methodology stands orthogonal to the recent literature, where we achieve
state-of-the-art performance in in-the-wild class-agnostic segmentation using a
novel bottom-up approach to the segmentation problem using limited train-
ing data and a simple network architecture. While this divergence creates new
promising research and development directions for class-agnostic segmentation,
combining our clustering-based formulation with large-scale training procedures,
it also enables the application of our methodology in other, data-scarce segmen-
tation problems as discussed in the next section.

5.3 Evaluation on Cell and Nucleus Segmentation

Our bottom-up approach is designed with a focus on simply generating or-
thogonal features for differentiating segments in an image. Our formulation

Table 4: Evaluation on EVICAN dataset [55]
Method Easy Difficulty Medium Difficulty Hard Difficulty

mAP↑ AP@50↑ AP@75↑ mAP↑ AP@50↑ AP@75↑ mAP↑ AP@50↑ AP@75↑
MRCNN [55] 0.322 0.616 0.317 0.136 0.310 0.105 0.085 0.208 0.044
DeepCeNS [29] 0.526 0.834 0.573 0.261 0.479 0.289 0.169 0.338 0.158
Ours 0.408 0.663 0.400 0.304 0.565 0.223 0.322 0.589 0.290

being developed
towards a sim-
ple clustering of
features achieves
state-of-the-art per-
formance even when
trained on a smaller
training dataset. This makes our method directly applicable to segmentation
problems in other domains such as biomedical images. We demonstrate this by
training our network, without any changes in the formulation, on the EVICAN
dataset [55] for the problem of cell and nucleus segmentation. EVICAN dataset
provides 4464 annotated microscopic images in their training split, where images
are typically of very little contrast. Using their test set, divided by them into
3 difficulty levels, we compare against domain-specific biomedical segmentation
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approaches MRCNN [55] and DeepCeNS [29] in Table 4. Following Schwendy et
al . [55], we use the average precision (AP) with different IoU thresholds. We
report the AP at 50 and 75% IoU, as well as the mean value of AP’s at 10 dif-
ferent IoU thresolds between 50-95%. We show competitive performance in easy
and medium difficulties, while significantly improving upon the baselines in the
hard difficulty subset. This demonstrates the generic nature of our bottom-up
approach to segmentation.

The network architectures adopted by these domain-specific approaches are
both convolutional neural networks similar to ours. Although CNN’s have inher-
ent limitations coming from a fixed receptive field, their ease of training makes
them applicable to data-scarce domains. This is in contrast with transformer-
based architectures such as HQES [51] and SAM [33] that can not be trained
using such small datasets. While our formulation can be applied to transformer-
based architectures, we show that the receptive field limitation of CNN’s can be
remedied within our feature-based formulation with a simple multi-resolution
estimation procedure as detailed in Section 4.1.

5.4 The Effect of the Segment-space Representation

Our system makes use of metric-learning inspired attraction and repulsion losses
La and Lc that allows the network to differentiate between entities. We also in-
clude the regional contrast loss Lrc for cases where the network groups two en-
tities together, as detailed in Section 3.4. In order to improve clustering quality,
we develop our segment-space representation and define an MSE and a gradient-
based loss, Ls and Lg, respectively. In this section, we measure the effect of our
segment-space representation on our generated features. For this purpose, we
measure the two qualities we expect from the generated features: inter-mean
similarity and intra-entity similarity. Inter-mean similarity measures if the net-
work is able to generate different mean orientations µk for different entities,
computed as the average cosine similarity between each (µk,µl) pair in an image.

Table 5: We compute the cosine-similarity between
means of different entities as well as features within
and entity for different loss combinations on the
ADE20K [66] dataset.
Included losses Inter-mean sim.↓ (deg. ↑) Intra-entity sim.↑ (deg. ↓)
Lrc + La + Lr 0.024 (88.6°) 0.152 (81.2°)
Lrc + La + Lr + Ls 0.031 (88.2°) 0.745 (41.8°)
Lrc + La + Lr + Ls + Lg 0.029 (88.3°) 0.754 (41.1°)

If the network is able
to generate perfectly or-
thogonal orientations for
every entity in the im-
age, our inter-mean sim-
ilarity metric would be 0.
Intra-entity similarity is
computed as the average
cosine similarity between
the mean assigned to each entity and the features generated for pixels belonging
to that entity. It measures how well-aligned the features belonging to an entity
to their corresponding mean orientation µk. In the case perfect alignment, our
intra-entity similarity metric would be 1. A good performance in both metrics
is desired for effective clustering of our features.

We compare the improvement brought by Ls and Lg in Table 5. We perform
this test by training 3 different versions of our formulation on the ADE20k
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training set for 10 epochs. It should be noted that all 3 versions include our
differentiation-based losses. This is required for our network to generate different
features for different entities, as our segment-space based losses only promote
better alignment inside a given entity. As Table 5 shows, our discriminative losses
are effective in generating almost perfectly orthogonal orientations for different
entities in all scenarios, while struggling to generate well-aligned features for each
segment. Our segment-space loss Ls significantly improves the performance in
this aspect, driving intra-entity similarity below the critical 45°threshold that
represents clear separation between the features of two entities with orthogonal
orientations. Our gradient-based loss Lg further improves the performance both
in terms of inter-mean orthogonality and intra-entity alignment.

6 Conclusion and Limitations

In this paper, we introduced a bottom-up approach to class-agnostic segmenta-
tion and show that this generalist approach shows a great generalization ability
to out-of-distribution images despite using standard class-based segmentation
datasets as real-world training data. This is in line with our current understand-
ing of human cognition which is modeled as a bottom-up process. Our network
is trained with a novel formulation that integrates ideas from contrastive learn-
ing with our new segment-space representation to achieve detailed clustering of
semantically meaningful regions in any image. We demonstrate the performance
of our formulation using a proof-of-concept implementation with a small convo-
lutional architecture trained on around 200k real-world images with class-based
annotations. Our approach represents a promising new direction for in-the-wild
class-agnostic segmentation that is typically approached with top-down formu-
lations as well as diverse segmentation challenges in other domains with limited
training data. We make use of iterative clustering of objects on image patches
to generate high-resolution segmentation results. This circumvents the limited
receptive field size of convolutional neural networks. The performance of our
method can be further improved by utilizing network architectures with higher
number of parameters and higher receptive field size.

We so far have only cared for entities to be different, using the segments
included in class-based datasets as individual entities. However, this entity def-
inition does not reflect the complexity of the real world. The definition of an
entity varies depending on the context. For instance, while the common datasets
treat person as a single entity, there are many applications that would benefit
from the segmentation of body parts or facial features. We believe a hierarchical
representation of entities will allow class-agnostic segmentation to be applicable
to a wider range of problems.
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