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Abstract

Realistic editing of photographs requires careful treatment of color mixtures that
commonly occur in natural scenes. These color mixtures are typically modeled
using soft selection of objects or scene colors. Hence, accurate representation of
these soft transitions between image regions is essential for high-quality image
editing and compositing. Current techniques for generating such representations
depend heavily on interaction by a skilled visual artist, as creating such accurate
object selections is a tedious task.

In this thesis, we approach the soft segmentation problem from two complemen-
tary properties of a photograph. Our first focus is representing images as a mixture
of main colors in the scene, by estimating soft segments of homogeneous colors.
We present a robust per-pixel nonlinear optimization formulation while simulta-
neously targeting computational efficiency and high accuracy. We then turn our
attention to semantics in a photograph and present our work on soft segmentation
of particular objects in a given scene. This work features graph-based formula-
tions that specifically target the accurate representation of soft transitions in linear
systems. Each part first presents an interactive segmentation scheme that targets
applications popular in professional compositing and movie post-production. The
interactive formulations are then generalized to the automatic estimation of generic
image representations that can be used to perform a number of otherwise complex
image editing tasks effortlessly.

The first problem studied is green-screen keying, interactive estimation of a clean
foreground layer with accurate opacities in a studio setup with a controlled back-
ground, typically set to be green. We present a simple two-step interaction scheme
to determine the main scene colors and their locations. The soft segmentation of
the foreground layer is done via the novel color unmixing formulation, which can
effectively represent a pixel color as a mixture of many colors characterized by sta-
tistical distributions. We show our formulation is robust against many challenges
in green-screen keying and can be used to achieve production-quality keying
results at a fraction of the time compared to commercial software.

We then study soft color segmentation, estimation of layers with homogeneous col-
ors and corresponding opacities. The soft color segments can be overlayed to give
the original image, providing effective intermediate representation of an image.
We decompose the global energy optimization formulation that typically models
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the soft color segmentation task into three sub-problems that can be implemented
with computational efficiency and scalability. Our formulation gets its strength
from the color unmixing energy, which is essential in ensuring homogeneous layer
colors and accurate opacities. We show that our method achieves a segmentation
quality that allows realistic manipulation of colors in natural photographs.

Natural image matting is the generalized version of green-screen keying, where an
accurate estimation of foreground opacities is targeted in an unconstrained setting.
We approach this problem using a graph-based approach, where we model the
connections in the graph as forms of information flow that distributes the informa-
tion from the user input into the whole image. By carefully defining information
flows to target challenging regions in complex foreground structures, we show
that high-quality soft segmentation of objects can be estimated through a closed-
form solution of a linear system. We extend our approach to related problems in
natural image matting such as matte refinement and layer color estimation and
demonstrate the effectiveness of our formulation through quantitative, qualitative
and theoretical analysis.

Finally, we introduce semantic soft segments, a set of layers that correspond
to semantically meaningful regions in an image with accurate soft transitions
between different objects. We approach this problem from a spectral segmentation
angle and propose a graph structure that embeds texture and color features from
the image as well as higher-level semantic information generated by a neural
network. The soft segments are generated via eigendecomposition of the carefully
constructed Laplacian matrix fully automatically. We demonstrate that compositing
and targeted image editing tasks can be done with little effort using semantic soft
segments.
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Zusammenfassung

Die realistische Bearbeitung von Fotos erfordert eine sorgfältige Behandlung
von Farbmischungen, die häufig in natürlichen Szenen auftreten. Diese Farbmi-
schungen werden typischerweise unter Verwendung einer weichen Auswahl von
Objekten oder Szenefarben modelliert. Eine genaue Darstellung dieser weichen
Übergänge zwischen Bildbereichen ist daher für eine qualitativ hochwertige Bildbe-
arbeitung und -zusammenstellung wesentlich. Aktuelle Techniken zur Erzeugung
solcher Darstellungen hängen stark von der Interaktion eines erfahrenen Grafikers
ab, da das Erzeugen einer derart genauen Objektauswahl eine mühsame Aufgabe
ist.

In dieser Arbeit nähern wir uns dem Problem der weichen Segmentierung von
zwei komplementären Eigenschaften einer Fotografie aus. Unser erster Fokus liegt
auf der Darstellung von Bildern als Mischung von Hauptfarben in der Szene, in-
dem weiche Segmente homogener Farben geschätzt werden. Wir präsentieren eine
robuste pixelweise nichtlineare Optimierung, die gleichzeitig effizient berechenbar
und genau ist. Wir wenden uns dann der Semantik in einer Fotografie zu und
präsentieren unsere Arbeit über die weiche Segmentierung bestimmter Objekte
in einer Szene. Dieser Teil der Arbeit enthält graphbasierte Formulierungen, die
speziell auf die genaue Darstellung von weichen Übergängen in linearen Systemen
abzielen. In jedem Teil wird zunächst ein interaktives Segmentierungsschema vor-
gestellt, das auf Anwendungen abzielt, die im professionellen Compositing und
in der Filmpostproduktion beliebt sind. Die interaktiven Formulierungen werden
dann auf die automatische Schätzung generischer Bilddarstellungen verallgemei-
nert, mit denen mühelos eine Reihe ansonsten komplexer Bildbearbeitungsaufga-
ben durchgeführt werden können.

Das erste untersuchte Problem ist das Green-Screen-Keying, die interaktive
Schätzung einer sauberen Vordergrundebene mit genauen Opazitäten in einem
Studio-Setup mit einem kontrollierten Hintergrund, der normalerweise auf Grün
eingestellt ist. Wir präsentieren ein einfaches, zweistufiges Interaktionsschema zur
Bestimmung der Hauptszenenfarben und ihrer Positionen. Die weiche Segmentie-
rung der Vordergrundschicht erfolgt über die neuartige Farbentmischungsformu-
lierung, die effektiv eine Pixelfarbe als Mischung vieler Farben darstellen kann,
die durch statistische Verteilungen gekennzeichnet sind. Wir zeigen, dass unsere
Formulierung vielen Herausforderungen beim Green-Screen-Keying standhält und

v



im Vergleich zu kommerzieller Software in einem Bruchteil der Zeit zur Erzielung
von Keying-Ergebnissen in Produktionsqualität verwendet werden kann.

Anschließend untersuchen wir die weiche Farbsegmentierung, die Schätzung von
Schichten mit homogenen Farben und der entsprechenden Opazitäten. Die wei-
chen Farbsegmente können überlagert werden, um das Originalbild zu erhalten
und eine effektive Zwischendarstellung eines Bildes zu ermöglichen. Wir zerlegen
die globale Energieoptimierungsformulierung, die typischerweise die Aufgabe
der weichen Farbsegmentierung modelliert, in drei Unterprobleme, die effizient
und skalierbar implementiert werden können. Die Effektivität unserer Formulie-
rung basiert auf der Farbentmischungsenergie, die für homogene Schichtfarben
und genaue Opazitäten unerlässlich ist. Wir zeigen, dass unsere Methode eine
Segmentierungsqualität erzielt, die eine realistische Manipulation von Farben in
natürlichen Fotografien ermöglicht.

Die natürliche Bildmattierung ist die verallgemeinerte Version der Green-Screen-
Kodierung, bei der eine genaue Schätzung der Vordergrundopazitäten in einer
uneingeschränkten Umgebung angestrebt wird. Wir nähern uns diesem Problem
mit einem graphbasierten Ansatz, bei dem wir die Kanten des Graphen zur Mo-
dellierung eines Informationsflusses verwenden, der die Informationen aus der
Benutzereingabe auf das gesamte Bild verteilt. Indem wir den Informationsfluss zu
schwierigen Regionen in komplexen Vordergrundstrukturen sorgfältig definieren,
zeigen wir, dass eine hochqualitative weiche Segmentierung von Objekten durch
eine geschlossene Lösung eines linearen Systems geschätzt werden kann. Wir
erweitern unseren Ansatz auf verwandte Probleme der natürlichen Bildmattierung
wie Mattverfeinerung und Schätzung der Schichtfarbe und belegen die Effektivität
unserer Formulierung durch quantitative, qualitative und theoretische Analysen.

Zum Schluss führen wir semantische weiche Segmente ein, eine Reihe von Ebe-
nen, die semantisch bedeutsamen Bereichen in einem Bild mit genauen weichen
Übergängen zwischen verschiedenen Objekten entsprechen. Wir betrachten dieses
Problem aus der Sichtweise einer spektralen Segmentierung und schlagen eine
Graphstruktur vor, die Textur- und Farbmerkmale aus dem Bild sowie semantische
Informationen auf höherer Ebene, die von einem neuronalen Netzwerk generiert
werden, einbettet. Die weichen Segmente werden durch Spektralzerlegung der
speziell konstruierten Laplace-Matrix vollautomatisch erzeugt. Wir zeigen, dass
Compositing und gezielte Bildbearbeitungsaufgaben mit semantischen weichen
Segmenten mit geringem Aufwand erledigt werden können.
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C H A P T E R 1
Introduction

Photographic expression of artistic intent and aesthetics has been a part of
global culture with growing importance through easily accessible capture
devices and sharing mediums. The widespread use of cheaper and higher-
quality cameras as well as social content sharing websites brought in the
democratization of photography and video production.

Despite the wide public interest, the image and video editing tools still have a
steep learning curve. This brings an entry barrier for amateur content creators
and casual photographers who wish to express themselves through high-
quality image manipulation tools. In addition, creating production-quality
content is still a bottleneck in terms of cost and time for professional movie
studios and photographers. Hence, providing convenient tools for realistic
image editing is of public and commercial ‘interest.

One of the biggest challenges in realistic editing of imagery comes from
the intricate mixtures of colors between distinct image regions in natural
photographs. As Figure 1.1 demonstrates, some of the prominent reasons for
these color mixtures can be listed as:

• Intricate structures such as hair, through which the background can
be partially observed due to their small size,

• Multiple illuminations, that illuminate the scene with different colors
from different directions,

• Fast moving objects, that create motion blur due to the finite exposure
time of the camera,
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Hair & illumination Motion & shadows Defocus & transparency

Figure 1.1.: Soft transitions between regions may come from intricate regions such as hair,
smooth illumination changes, motion blur, natural shadows, defocus blur or transparency.

• Shadows, that has a distinctive penumbra around their edges when
the light source has a finite size,

• Defocus blur, that occurs due to the aperture of the camera and is
usually characterized by the lens, or

• Transparent objects, that partially transmits the light coming from
behind the object.

In fact, color mixtures occur even around the hard edges between objects
due to the finite size of the image sensors. These color mixtures occur in all
natural photographs and they need to be handled carefully in image editing
for a realistic end result.

These phenomenon can be modeled individually for targeted analysis. In the
academic literature, there are many works that focuses on analyzing motion
blur [Lin et al., 2011; Pan et al., 2016], illumination decomposition [Hui et al.,
2019; Aksoy et al., 2018a], shadow analysis and removal [Chuang et al., 2003;
Wu et al., 2007], or defocus blur analysis [Bae and Durand, 2007; Zhu et al.,
2013], to list a few.

In this thesis, we will approach these color mixtures from a more generic
perspective through soft segmentation. Image segmentation is the problem
of partitioning the image into regions by assigning each pixel a particular
label that corresponds to a segment. Soft segmentation aims to assign each
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pixel partial labels, allowing each pixel to belong to multiple segments. This
partial labeling can be used to represent the color mixtures that only depend
on the appearance of the pixel in the digital representation of the photograph,
without going into particulars of the physical phenomenon behind the mix-
ture. That being said, our work on soft segmentation will include a focus
on analyzing intricate structures and transparency that are of high interest
in interactive compositing applications. We will demonstrate that carefully
designed soft segmentation algorithms open up new realistic image editing
capabilities that require minimal individual expertise from the artist.

1.1. Topics in this thesis

We approach the soft segmentation problem from two different directions:
with respect to colors and with respect to objects in a given scene. In Part I,
we will introduce color unmixing, a per-pixel nonlinear energy formulation
that effectively represents the image as a mixture of scene colors. Part II
focuses on graph-based representations of images that enable accurate soft
segmentation of objects in the image through linear global energy formula-
tions. Each part starts with the study of an interactive segmentation problem
commonly used in image editing and movie post production. We then extend
these formulations to propose fully automatic estimation of generic image
representations that make complex image editing tasks trivial via per-layer
operations.

1.1.1. Green-Screen Keying

As computer-generated imagery became convincingly realistic, compositing
synthetic backgrounds and objects into live-action shots became a common
practice in feature film production. The widespread use of composite shots
over pure live-action is often motivated by the higher degree of artistic control
over the final shot, as well as the potential to reduce production costs. Usually,
the first step in a digital compositing workflow is the performance capture
of the actors and various other live-action elements against a controlled
— typically green — background. Then, in post-production, one needs to
obtain RGBA foreground layers corresponding to the live-action elements
that ideally carry no trace of the green-screen background. This process
is often referred to as keying. Finally, one or more foreground layers are
combined with the desired computer generated scene elements to obtain the
composite shot.

Keying is a crucial intermediate step in any compositing workflow, as later
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Input frame Our keying result Keying by artist

Figure 1.2.: Green-screen keying is the extraction of the foreground object shot in front
of a controlled background with accurate opacities and colors. We present an interactive
approach that is robust around challenging regions such as translucency and intricate
object boundaries like the curly hair as seen above. Our method achieves and usually
surpasses the keying quality of a professional artist using commercial software at one-tenth
of the interaction time.

in the workflow seamless blending between the synthetic and live-action
elements is highly dependent on obtaining high-quality keying results. The
keying process usually starts with the compositing artist obtaining prelimi-
nary foreground layers by using multiple software tools in concert, some of
the most popular ones being The Foundry’s Keylight, Nuke’s Image Based
Keyer (IBK) and Red Giant’s Primatte. Often, this first step already involves
significant manual labor in the form of parameter tweaking or drawing
roto-masks. Ideally, the preliminary foreground layers would already be
sufficiently high quality so that one can move on to consecutive steps in the
compositing pipeline. Unfortunately, this is rarely the case in practice and
the imperfections in the foreground layer still have to be corrected by manual
painting before moving forward. In professional circles, the combined man-
ual work required for both obtaining preliminary keying results and later
their refinement by manual painting is recognized as a significant bottleneck
in post-production. We present an example process of keying by an artist
using comercial tools in Section 3.3.

Our contributions

The feedback we collected from industry professionals as well as our own
experience showed that commercial software tools have difficulties dealing
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with image regions where the colors of multiple objects mix, either due to
motion blur, intricate object boundaries (e.g. hair), or color spill, i.e. color cast
due to indirect illumination from green-screen. Influenced by this observation,
we propose a novel energy function for solving the fundamental problem
of unmixing a color mixture, i.e. computing both the individual underlying
colors as well as their mixing ratios, i.e. their opacities or alpha values. We
efficiently minimize this energy function by utilizing priors for the underlying
colors in the mixture, which are obtained and refined through a two-step user
interaction designed specifically for green-screen keying. In a comprehensive
set of quantitative and qualitative evaluations with the help of a specialized
compositing artist, we show that our method consistently outperforms both
the current commercial software tools and the state-of-the-art natural matting
methods in the domain of green-screen keying. Importantly, the superior
results of our technique can be obtained on average by using only one-tenth
of the manual interaction time required by a trained artist for processing the
same content with the current state-of-the-art tools. Figure 1.2 shows the
keying results of the proposed method next to one by the professional artist.

1.1.2. Soft Color Segmentation

The goal of soft color segmentation is to decompose an image into a set of
layers with alpha channels, such as in Figure 1.3. These layers usually consist
of fully opaque and fully transparent regions, as well as pixels with alpha
values between the two extremes wherever multiple layers overlap. Ideally,
the color content of a layer should be homogeneous, and its alpha channel
should accurately reflect the color contribution of the layer to the input image.
Equally important is to ensure that overlaying all layers yields the input
image. If a soft color segmentation method satisfies these and a number
of other well-defined criteria that we discuss in Chapter 4, the resulting
layers can be used for manipulating the image content conveniently through
applying per-layer modifications. These image manipulations can range from
subtle edits to give the feeling that the image was shot at a different time of
the day (Figure 1.3), to more pronounced changes that involve dramatic hue
shifts or replacing the image background.

Obtaining layers that meet the demanding quality requirements of image
manipulation applications is challenging, as even barely visible artifacts on
individual layers can have a significant negative impact on quality when
certain types of image edits are applied. That said, once we devise a soft color
segmentation method that reliably produces high-quality layers, numerous
image manipulation tasks can be performed with little extra effort by taking
advantage of this image decomposition. Importantly, the resulting layers
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Input image Color editing result

The statistical color model and the estimated soft color segments

Figure 1.3.: We propose a fully automatic soft color segmentation method that generates
high-quality representations of photographs as mixtures of the main scene colors. These
layers of homogeneous colors boils complex image editing tasks down to simple per-layer
operations.

naturally integrate into the layer-based workflows of widely-used image
manipulation packages. By using soft color segmentation as a black box,
and importing the resulting layers into their favorite image manipulation
software, users can make use of their already existing skills.

While the traditional hard segmentation is one of the most active fields of
visual computing, soft color segmentation has received surprisingly little
attention so far. In addition to direct investigations of soft color segmenta-
tion [Tai et al., 2007; Tan et al., 2016], certain natural alpha matting methods
presented soft color segmentation methods —without necessarily calling
them as such— as a component in their pipeline. While it may seem at a first
glance that one can simply use any of these previous methods for practical
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and high-quality photo manipulation, a closer look reveals various shortcom-
ings of the currently available soft color segmentation methods. We provide
a theoretical analysis of the soft color segmentation methods in the literature
in Section 4.2.

Our contributions

We address the two main challenges of soft color segmentation: devising a
color unmixing scheme that results in high-quality soft color segments, and
automatically determining a content-adaptive color model from an input
image. We extend our color unmixing formulation to better fit the problem of
a generic soft color segmentation that enforces matte sparsity, favoring fully
opaque or transparent pixels. This extended formulation that we call sparse
color unmixing (SCU) decomposes the image into layers of homogeneous
colors. We also enforce spatial coherency in opacity channels and accord-
ingly propose a color refinement procedure that is required for preventing
visual artifacts while applying image edits. By breaking the requirements
of the soft color segmentation problem into these sub-problems, we require
computational resources that are magnitudes less than the state-of-the-art.
We additionally propose a method for automatically estimating a color model
corresponding to an input image, which comprises a set of distinct and
representative color distributions. Our method determines the size of the
color model automatically in a content adaptive manner. We show that the
color model estimation can efficiently be performed using our novel projected
color unmixing (PCU) formulation. We show that our method consistently
produces high-quality layers, and demonstrate numerous common image
manipulation applications can be reduced to trivial per-layer operations that
can be performed conveniently through familiar software tools.

1.1.3. Natural Image Matting

Extracting the opacity information of user-defined objects from an image is
known as natural image matting. Natural image matting has received great
interest from the research community in the last decade and can nowadays
be considered as one of the classical research problems in visual computing.
Mathematically, image matting requires expressing pixel colors in the transi-
tion regions from foreground to background as a convex combination of their
underlying foreground and background colors. The weight, or the opacity,
of the foreground color is referred to as the alpha value of that pixel. Since
neither the foreground and background colors nor the opacities are known,
estimating the opacity values is a highly ill-posed problem. To alleviate the
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Input image & trimap Our matting and color est. result

Figure 1.4.: Given the input image and the corresponding trimap, our novel affinity-
based matting formulation can estimate high-quality opacities and layer colors even around
challenging scene structures and similar foreground and background colors.

difficulty of this problem, typically a trimap is provided in addition to the
original image. The trimap is a rough segmentation of the input image into
foreground, background, and regions with unknown opacity.

The main application of natural image matting is compositing, i.e. combining
different scenes together to generate a new image. Image matting methods
aim to provide accurate opacities such that when the foreground is over-
layed onto a novel background, the transitions between them look natural.
However, together with the matte, compositing requires the actual, unmixed
layer colors for realistic composites. The layer colors appear as a mixture of
foreground and background colors in the input image, and they are under-
constrained even with a given matte. Hence, accurate estimation of the layer
colors is a critical component of a compositing pipeline and still an active
research problem.

Affinity-based methods [Levin et al., 2008a; Chen et al., 2013a; Chen et al.,
2012] constitute one of the prominent natural matting approaches in literature.
These methods make use of pixel similarities to propagate the alpha values
from the known-alpha regions to the unknown region. They provide a
clear mathematical formulation, can be solved in closed-form and typically
produce spatially consistent mattes. In addition, due to their formulation that
can be modeled as a graph structure with each pixel as a node, affinity-based
approaches can be generalized to related applications such as layer color
estimation [Levin et al., 2008a], edit propagation [Chen et al., 2012], and soft
segmentation [Levin et al., 2008b]. Studying affinity-based approaches for
natural matting can open new directions for a larger set of applications in the
image processing community.
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Our contributions

In spite of these advantages, current affinity-based methods fail to effectively
handle alpha gradients spanning large areas and spatially disconnected re-
gions (i.e. holes) even in simple cases. This is because a straightforward
formulation using the pixel-to-pixel affinity definitions can not effectively
represent the complex structures that are commonly seen in real-life objects.
We provide an analysis of different affinity-based methods through spectral
decomposition in Section 5.5. In order to alleviate these shortcomings, we
rely on a careful, case-by-case design of how alpha values should propagate
inside the image. We conceptualize the affinities as information flows to help
understanding and designing effective graph-based structures to propagate
information in the image. We define several information flows, some of
which target unknown-opacity regions that are remote and hence does not
receive enough information in previous formulations. Other types of infor-
mation flows address issues such as evenly distributing information inside
the unknown region. Our final linear system can be solved in closed-form
and results in a significant quality improvement over the state-of-the-art. In
addition, we extend our graph-based formulation to matte refinement and
layer color estimation. Figure 1.4 shows the result of our natural matting and
layer color estimation methods.

1.1.4. Semantic Soft Segmentation

Soft selection of regions in the image is at the core of the image editing process.
For instance, local adjustments often start with a selection, and combining
elements from different images is a powerful way to produce new content.
But creating an accurate selection is a tedious task especially when fuzzy
boundaries and transparency are involved. Tools such as the magnetic lasso
and the magic wand exist to assist users but they only exploit low-level cues
and heavily rely on the users’ skills and interpretation of the image content
to produce good results. Furthermore, they only produce binary selections
that need further refinement to account for soft boundaries like the silhouette
of a furry dog. Natural matting tools also exist to help users with this task
but especially for casual users, they add to the tedium of the entire editing
process.

An accurate pre-segmentation of the image can speed up the editing process
by providing an intermediate image representation if it satisfies several crite-
ria. First of all, such a segmentation should provide distinct segments of the
image, while also representing the soft transitions between them accurately.
In order to allow targeted edits, each segment should be limited to the extent
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Input image Semantic features Soft segments Segm. object

Figure 1.5.: By fusing low-level features from the image with high-level information on
objectness from a neural network in a single graph structure, we automatically extract
mattes of the objects in the image in a process we call semantic soft segmentation. Semantic
soft segments, visualized by assigning each a solid color, can be used for compositing or
targeted image editing applications.

of a semantically meaningful region in the image, e.g., it should not extend
across the boundary between two objects. Finally, the segmentation should be
done fully automatically not to add a point of interaction or require expertise
from the artist. The previous approaches for semantic segmentation, image
matting, or soft color segmentation fail to satisfy at least one of these qualities.

Our contributions

We introduce semantic soft segmentation, a fully automatic decomposition of
an input image into a set of layers that cover scene objects, separated by soft
transitions. We approach the semantic soft segmentation problem from a
spectral decomposition angle. We combine the texture and color information
from the input image together with high-level semantic cues that we generate
using a convolutional neural network trained for scene analysis. We design a
graph structure that reveals the semantic objects as well as the soft transitions
between them in the eigenvectors of the corresponding Laplacian matrix. We
introduce a spatially varying model of layer sparsity that generates high-
quality layers from the eigenvectors that can be utilized for image editing.

We demonstrate that our algorithm successfully decomposes images into a
small number of layers that compactly and accurately represent the scene
objects. We also show that our algorithm can successfully process images
that are challenging for other techniques and we provide examples of edit-
ing operations such as local color adjustment or background replacement
that benefit from our layer representation. Figure 1.5 shows the high-level
features that is used in the graph formulation, the semantic soft segments
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and an isolated semantic region of the image that is ready for compositing
applications.

1.2. Publications

The following peer-reviewed work has been published in the context of this
thesis:

[Aksoy et al., 2016] Yağız Aksoy, Tunç Ozan Aydın, Marc Pollefeys, and
Aljoša Smolić. Interactive high-quality green-screen keying via color
unmixing. ACM Trans. Graph., 35(5):152:1–152:12, 2016.

[Aksoy et al., 2017b] Yağız Aksoy, Tunç Ozan Aydın, Aljoša Smolić, and
Marc Pollefeys. Unmixing-based soft color segmentation for image manip-
ulation. ACM Trans. Graph., 36(2):19:1–19:19, 2017.

[Aksoy et al., 2017a] Yağız Aksoy, Tunç Ozan Aydın, and Marc Pollefeys.
Designing effective inter-pixel information flow for natural image matting.
In International Conference on Computer Vision and Pattern Recognition (Proc.
CVPR), 2017.

[Aksoy et al., 2018b] Yağız Aksoy, Tae-Hyun Oh, Sylvain Paris, Marc Polle-
feys, and Wojciech Matusik. Semantic soft segmentation. ACM Trans.
Graph. (Proc. SIGGRAPH), 37(4):72:1–72:13, 2018.

The work below was also conducted during the time period of this doctoral
study but was not included in this thesis:

[Angehrn et al., 2014] Florian Angehrn, Oliver Wang, Yağız Aksoy, Markus
Gross, and Aljoša Smolić. MasterCam FVV: Robust registration of multi-
view sports video to a static high-resolution master camera for free view-
point video. In International Conference on Image Processing (Proc. ICIP),
2014.

[Ryffel et al., 2017] Mattia Ryffel, Fabio Zünd, Yağız Aksoy, Alessia Marra,
Maurizio Nitti, Tunç Ozan Aydın, and Bob Sumner. AR museum: A
mobile augmented reality application for interactive painting recoloring.
In International Conference on Game and Entertainment Technologies (Proc.
GET), 2017.

[Aksoy et al., 2018a] Yağız Aksoy, Changil Kim, Petr Kellnhofer, Sylvain
Paris, Mohamed Elgharib, Marc Pollefeys, and Wojciech Matusik. A
dataset of flash and ambient illumination pairs from the crowd. In European
Conference on Computer Vision (Proc. ECCV), 2018.

[Kaspar et al., 2018] Alexandre Kaspar, Geneviève Patterson, Changil Kim,
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Yağız Aksoy, Wojciech Matusik, and Mohamed Elgharib. Crowd-guided
ensembles: How can we choreograph crowd workers for video segmen-
tation? In Conference on Human Factors in Computing Systems (Proc. ACM
CHI), 2018.

[Tang et al., 2019] Jingwei Tang, Yağız Aksoy, Cengiz Öztireli, Markus Gross,
and Tunç Ozan Aydın. Learning-based sampling for natural image matting.
In International Conference on Computer Vision and Pattern Recognition (Proc.
CVPR), 2019.
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C H A P T E R 2
Related Work

Previous work uses the term soft segmentation in various contexts, such as
the probabilistic classification of CT scans [Posirca et al., 2011], computing
per-pixel foreground/background probabilities [Yang et al., 2010a], and inter-
active image segmentation utilizing soft input constraints [Yang et al., 2010b].
In fact, generally speaking, even the traditional K-means clustering algorithm
can be considered as a soft segmentation method, as it computes both a label
as well as a confidence value for each point in the feature space [Tai et al.,
2007]. In contrast to these approaches, we will use soft segmentation to repre-
sent the color mixtures in images. In this context, the partial labels that get
assigned to each pixel represent the weight of the color of each segment that
forms the color mixture. In the case of assigning one of two labels to a pixel,
i.e. foreground or background, these weights are called opacities, represented
by α values per pixel. In this chapter, we will summarize work closely related
to the soft segmentation problems studied in the rest of the thesis.

2.1. Interactive Soft Segmentation for Compositing

Interactive soft segmentation typically targets the extraction of the opacities
of a user-defined foreground object. The main compositing model used in
the literature for this two-layer decomposition is:

cp = αp f p +
(
1− αp

)
bp, (2.1)
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where cp is the observed image color at pixel p, and αp, f p, and bp are the
opacity of the foreground, and the color of the foreground and background
colors that got into the mixture at pixel p, respectively.

2.1.1. Green-Screen Keying

Keying is the process of extracting the foreground objects with corresponding
opacities in a controlled capture setup that specifically targets compositing
the foreground in a novel scene. It is widely used in movie post-production,
television broadcasting, and amateur video making. The process is called
luma keying when the background color bp is constrained to be very bright
or very dark, or chroma keying when the defining characteristic of the back-
ground is its color. The most popular background color in the digital age is
green, and hence the process is commonly referred to as green-screen keying.

Commercial keying tools often use chroma-based or luma-based algorithms.
In feature film post-production, these tools are operated by specialized com-
positing artists for obtaining a preliminary keying result. Preliminary results
often require further manual processing, because, despite the parameter
tweaking and the usage of roto-masks, they often fall short of the quality
level demanded in professional productions. Since such keying results are
unacceptable in professional production, the preliminary keying results un-
dergo an extremely tedious manual painting process, where each pixel in
the video is cleaned off of keying errors by hand. We provide a detailed
step-by-step keying process by an independent keying artist to show the
common practice in keying in Section 3.3.

Keying received relatively little attention in the literature. Smith and
Blinn [1996] present an overview of chroma keying in the industry until
1996, typically disclosed in patents rather than academic manuscripts, and
present the theoretical foundations of keying through the compositing equa-
tion (2.1) focusing on the color content of the foreground. While constraining
the background color is helpful to get cleaner foreground results, there are
still four unknowns ( f and α) and three equations, one for each color channel,
in (2.1). Grundhöfer et al [2010] proposes an overconstrained problem by
shooting the same foreground with two different and controlled backgrounds,
increasing the number of equations to six. In their recent work, LeGendre et
al. [2017] uses oriented filters to increase keying performance around thin
hair strands.

We present a keying approach that uses a statistical color model of the scene
in Chapter 3. Unlike the commercial software that uses a color definition for
the background and depends further on the skills of a digital artist, our color
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model represents all the colors in the scene. Through the use of novel color
unmixing, we show that very high-quality keying results can be achieved by
an inexperienced user at one-tenth of the interaction time typically required
by a professional artist using commercial tools.

2.1.2. Natural Image Matting

Natural image matting can be regarded as the generalized version of green-
screen keying, as the background can take the form of a natural scene rather
than a controlled studio environment. In this case, all the variables in (2.1)
except for the observed image color are unknown, and hence natural image
matting is a highly underconstrained problem.

This inherent ambiguity of the problem is typically alleviated through a
user input called a trimap, which separates the image into three regions:
fully foreground, i.e. opaque (α = 1), fully background, i.e. transparent
(α = 0), and of unknown opacity, in which α values are to be estimated.
With this additional user input, matte estimation becomes a color modeling
problem, where the color and textural characteristics of the pure foreground
and background regions are used to reason about the soft transitions between
them.

Natural matting methods in the literature can be classified through how they
approach this color modeling problem. Modern natural matting algorithms
usually fall into three main categories:

• Affinity-based matting: using the similarity of colors between pixels
to reason about the corresponding structure of the alpha matte

• Sampling-based matting: reasoning about f and b for the pixels in
the unknown-opacity region using the foreground and background
colors defined in the trimap to solve for α in (2.1)

• Data-driven matting: Using machine learning algorithms to directly
reason about the matte

Affinity-based matting algorithms aim to propagate the opacities of the fore-
ground and the background into the unknown-opacity region by defining
pixel-to-pixel similarity metrics inside a graph structure. The use of color
gradients as a clue for how opacities relate to each other in the work of Mit-
sunaga et al. [1995], or the use of a local color manifold in the soft transition
regions in the work of Ruzon and Tomasi [2000] that defined the natural mat-
ting problem can be regarded as predecessors to affinity-based approaches.
The modern formulations for affinity-based matting typically construct a
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linear system that relates the opacities of local or non-local neighboring pixels
through color-based affinity definitions.

One of the most fundamental approaches for relating local opacity changes
with the observed colors in the original image is the work by Levin et
al. [2008a]. Levin et al. derive the opacity of a pixel from the opacities of
the neighboring pixels by assuming constant foreground and background
layer colors in a small local window. These local relations can be formulated
through a graph structure represented by matting Laplacian, a positive semi-
definite matrix of size N × N, where N is the number of pixels. They show
that the trimap can be used as soft constraints in a linear system formulation
together with the matting Laplacian to solve for the opacities in closed form.
While the matting Laplacian is very effective in representing local soft tran-
sitions and widely used in related literature, its representative power does
not generalize to complex scene structures for which the use of only local
affinities is not enough.

The limitations of solely local connections can be overcome by introducing
nonlocal affinities that relate the opacities of pixels that may be spatially far
away from each other. Nonlocal matting by Lee and Wu [2011] modifies
Levin et al.’s [2008a] in this spirit, by formulating an affinity matrix that
connects nonlocal neighbors. KNN matting [Chen et al., 2013a] presents an
approach where they solely depend on simple color and spatial proximities
of pixels in varying color spaces to construct their graph structures and
show that complex matte structures, such as ones that contain small holes of
background in the foreground, can be represented in their model. Only using
color similarity of pixels to relate their alpha values has its own shortcomings,
such as a limited representational power of opacity gradients.

Chen et al. [2012] use nonlocal neighbors to represent the feature vector of a
pixel, composed of its spatial coordinates and color, as a linear combination
of its neighbors using locally linear embedding (LLE) [Roweis and Saul, 2000]
and show that this linear relationship can be used to represent the opacity
relationships by an empirical demonstration of matting results. They build
upon this idea in their following work [Chen et al., 2013b] to propose a linear
system better calibrated for image matting by combining the LLE-based
graph with the matting Laplacian. While they demonstrate favorable results
to that of KNN matting, they depend on a sampling-based method to provide
an initial estimate, rather than representing the opacity transitions through a
single graph structure.

The graph-based representations of opacity relationships between pixels
provide flexible formulations that can be extended to related problems in
natural matting such as matte refinement, layer color extraction, soft color
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segmentation, and edit propagation. These extensions are covered later in
this chapter in the corresponding sections.

In this thesis, we introduce an affinity-based matting algorithm that makes
use of nonlocal neighbors, LLE, and matting Laplacian through careful neigh-
borhood definitions that target challenging matte structures that appear in
natural objects in Chapter 5. Further discussion of the state-of-the-art in
affinity-based natural matting through spectral analysis is presented in Sec-
tion 5.5.

Sampling-based approaches to matting aim to select a f and a b for each
pixel in the unknown region by sampling from the known-opacity regions
defined in the trimap so that α can be directly solved using (2.1). Early
work on natural matting by Chuang et al [2001] called Bayesian matting
defines local color distributions to represent these per-pixel samples, but
more modern approaches tend to determine sets of many samples from
foreground and background and select a particular pair for each pixel.

The methods in the literature focus on two main sub-problems separately: de-
termining the sample sets and selecting samples from these sets for each pixel.
Global matting [He et al., 2011] collects samples from the boundaries between
the unknown and known regions in the trimap, while shared matting [Gastal
and Oliveira, 2010] looks at different directions from each unknown pixel
to diversify the possible sample colors. Karacan et al. [2015] and Feng et
al. [2016] propose more sophisticated sampling approaches that depend on
color clusters and sparsity of samples to create a more comprehensive set
of samples that encompass the observed colors, while Shahrian et al. [2013]
estimate local normal distributions of colors to collect their samples. For the
selection of the samples, robust matting [Wang and Cohen, 2007] heavily
favors spatial proximity to each unknown pixel, while Shahrian et al. [2013]
propose a selection metric that combines the spatial proximity with com-
positing error of samples measured using (2.1) and the color similarity of
the candidate samples from the foreground and the background. Once the
samples are selected, the alpha values are estimated by solving (2.1) for α

for each pixel. Due to the per-pixel decisions in the sample selection step
and the sensitivity of the compositing equation to the accuracy and precision
of the selected samples, the initial alpha estimates by the sampling-based
methods suffer from spatial smoothness issues and are typically refined in an
additional post-processing step.

We show that most sampling-based approaches can be outperformed by a
simple k nearest neighbors search that determines many samples for each
pixel in Section 5.6. This is mainly due to the sample selection process that
does not generalize when there are similar colors in the foreground and
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the background or give unreliable results around fully-opaque and fully-
transparent regions in the state-of-the-art sampling-based methods. A recent
approach by Tang et al. [2019] overcomes these issues by using deep neural
networks for both the sample selection and matte estimation steps in a hybrid
sampling- and learning-based approach.

Data-driven approaches to matting can vary from automatic estimation of
the trimap to direct matte estimation to combine mattes estimated by various
approaches. As the definition of the foreground in the trimap depends on
the semantic content of the object to be matted, automatic trimap estimation
methods target specific object categories, such as people. Shin et al. [2016]
presents a portrait matting approach that determines the trimap through a
deep neural network and obtains the matte using closed-form matting [Levin
et al., 2008a]. With computational efficiency in mind, Zhu et al. [2017] re-
places the matting step with a simple neural architecture that converts a hard
segmentation into a soft one. Chen et al. [2018] uses two neural networks
that can be trained in cascade for automatic matte estimation of people.

The conventional matting problem with the trimap given as input is ad-
dressed using deep neural networks through varying approaches. Cho et
al. [2019] shows that mattes estimated by multiple methods can be combined
to achieve better matting performance through the use of a deep neural net-
work using a relatively small dataset. Xu et al. [2017] introduce a large dataset
for image matting and achieve state-of-the-art matting performance through
a network that takes the trimap and the image as input and produce an initial
matte estimate. Their results, however, suffer from lack of sharpness in the
matte despite their use of a second network targeted at this issue. Lutz et
al. [2018] propose a generative adversarial network architecture that is able
to produce sharp matting results. Tang et al. [2019] make use of a version
of the network architecture by Lutz et al. in the final stage of their hybrid
sampling- and learning-based approach, where they estimate the per-pixel
color samples using network architectures that originally targeted image
inpainting.

Matte refinement is usually required as post-processing after sampling-based
matting that produce per-pixel initial matte estimations. The most popular
refinement approach is the one proposed by Gastal and Oliveira [2010] that
uses the initial estimates in a fidelity term in the linear system they construct
using the matting Laplacian [Levin et al., 2008a] as the smoothing agent. We
extend our matting framework for matte refinement using a linear system
similar to that of Gastal and Oliveira’s in Section 5.2.

Layer color estimation is required for the majority of the natural matting
methods for the matte to be used in compositing applications. This is due to
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the fact that natural matting typically aims only to estimate the opacities to
ease the complexity of the problem. In the literature, layer color estimation
methods are presented as the extensions of affinity-based methods that use
similar graph structures. Levin et al. [2008a] construct their linear system to
ensure spatial smoothness of layer colors around opacity transition regions.
Chen et al. [2013a] proposes a graph structure that enforces similar layer
colors to pixels with similar opacities and original pixel colors, following
their matting formulation. We propose a layer color estimation method that
uses multiple affinity definitions to better address the challenging foreground
structures in Section 5.3.

2.2. Multi-Layer Soft Segmentation

The interactive approaches mentioned before is widely used in image and
video editing in the industry. However, the concept of opacity estimation can
also be used to represent images in terms of soft segments. These approaches
focus on a specific characteristic of an image, such as the scene colors or the
objects in the scene, and represent the extent of each through multiple mattes.
The compositing equation shown in (2.1) can be generalized as:

cp = ∑
i

αi,pui,p, (2.2)

where the index i corresponds to each layer, αi,p and ui,p are the opacity and
the layer color of the ith layer at pixel p, given that ∑i αi,p = 1 representing
the opaque input image. This compositing model is commonly referred to as
alpha add representation, although other compositing models are also be used
in the literature.

Although the target is the estimation of opacity channels, matting/keying
and multi-layer soft segmentation have fundamental differences. Green-
screen keying focuses on cleaning the foreground object off of user-defined
background color, focusing on preserving the foreground details as much as
possible through color modeling. Similarly, natural matting with a trimap as
input becomes the problem of foreground and background color modeling,
may it be through selection of color samples or propagation of color informa-
tion. Meanwhile, soft segmentation focuses on identifying the soft transitions
that best serve the target application, such as representing the color mixtures
or semantically/spatially meaningful soft transitions in the image.

Several methods require seed pixels or regions as a starting point for soft
segmentation. The multilayer matte estimation method by Singaraju and
Vidal [2011] extends the closed-form matting [Levin et al., 2008a] to multiple
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layers with an iterative formulation for spatial soft segmentation. The input
they use can be characterized as a trimap with many different foreground
regions. KNN matting [Chen et al., 2013a] can also be used for soft segmen-
tation when multiple pixels are used as seeds for each segment. With their
nonlocal affinity definition that relates pixels in terms of their spatial prox-
imity as well as color similarity, the soft segmentation performed by KNN
matting can be classified as a hybrid spatial- and color-based soft segmenta-
tion. A similar hybrid soft segmentation was done through an expectation
maximization formulation for color editing by Tai et al. [2005].

Soft color segmentation, first proposed by Tai et al. [2007], aims to represent
the input image in terms of color mixtures. In this approach, each layer
is expected to have a homogeneous color, i.e. ui should take similar values
across the image for each layer i. The set of colors that define each layer’s color
content is usually called the color model. Tai et al [2007] propose an alternating
optimization technique using a Markov random field formulation which
estimates the opacities, the layer colors, and the color model alternatingly in
an iterative scheme. The RGB-space geometry approach by Tan et al. [2016]
first fixes the color content of each segment with a hull that encompasses the
color values that appear in the input image and then estimates the opacities.

The aforementioned soft segmentation methods can generate representations
that allow for easy image editing and compositing, but they have short-
comings in terms of spatial smoothness, computational complexity, color
homogeneity, or the required user input. We provide an in-depth analysis of
these methods in Section 4.2.

We extend the color unmixing formulation used in green-screen keying for
generic soft color segmentation in Chapter 4. We demonstrate that the pro-
posed method outperforms related work in terms of computational complex-
ity, layer quality, and color homogeneity.

Levin et al. [2008b] introduced an automatic spatial soft segmentation formu-
lation through the spectral analysis of the matting Laplacian. They show that
the eigenvectors that correspond to the smallest eigenvalues of the matting
Laplacian reveal the spatially coherent regions in the image together with
the soft transitions between them. We augment the matting Laplacian with
high-level information on objectness coming from a deep neural network
and extend Levin et al.’s formulation to propose a novel soft segmentation
paradigm, semantic soft segmentation, in Chapter 6.
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Color Unmixing
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C H A P T E R 3
Interactive High-Quality Green-Screen
Keying via Color Unmixing

We study the problem of green-screen keying through the lens of color mix-
tures that represent many of the challenges in creating a foreground that is
completely cleared from the controlled background color. We will first detail
the color unmixing energy and its optimization which estimates the weight of
each color that went into the color mixture at each pixel. The color unmixing
formulation depends on a parametric representation of all the scene colors
that we refer to as the color model. The color model is acquired via a two-step
user interaction scheme, as detailed in Section 3.2. The main steps of our
keying pipeline can be seen in Figure 3.1. We also give a detailed example
on the common practice in green-screen keying in the industry to put the
advantages of our approach in perspective in Section 3.3.

3.1. Color Unmixing

The central component of our method is an energy minimization framework,
where the color c of a pixel is hypothesized to be a mixture of a number of
underlying colors ui. The problem solved by our framework is the estimation
of the underlying colors and their mixing ratios (αi), such that the linear
combination of the underlying colors weighted by corresponding mixing
ratios gives the original pixel color c. To that end, we build and utilize a
parametric representation of all the colors present in the scene which we
refer simply as the color model. The color model comprises N distributions in
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Figure 3.1.: Major steps of our method. First, parameters of a global color model are
obtained from a key frame via a simple scribble interface (a) (Section 3.2.1). For a different
query frame (b), the global color model is refined into local color models (c) (Section 3.2.2)
which are utilized for extracting multiple color layers via color unmixing (d) (Section 3.1).
A subset of layers is then combined to get the final keying result (e). The layers can be used
for compositing as well as color editing (f).

RGB space. Both the number and the parameters of these distributions are
obtained through user interaction. We assume that the color model for an
input scene is already known to us throughout this section, and rather focus
on the formulation and efficient solution of the color unmixing problem. A
detailed discussion on building the color model of an input scene will follow
in Section 3.2.

We start formulating our color unmixing framework by defining three basic
constraints that each pixel should satisfy: (i) an alpha constraint which states
that the alpha values αi should sum up to unity, (ii) a color constraint which
states that we should obtain the original color c of the pixel when we mix
the underlying colors ui using the corresponding alpha values, and (iii) a box
constraint that limits the space of possible alpha and color values. Formally,
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we express these constraints as follows:

∑
i

αi = 1, ∑
i

αiui = c, and αi, ui ∈ [0, 1]. (3.1)

The cost associated with the occurrence of an underlying color ui in a mixture
c is defined by how well it fits to the corresponding distribution N (µi, Σi),
where µ and Σ denote the mean vector and the covariance matrix, and N is
the normal distribution. We use the squared Mahalanobis distance as our
measure of goodness of fit:

Di(u) = (u− µi)
TΣ−1

i (u− µi), (3.2)

and define our energy function F of selecting a particular mixture of N
underlying colors accordingly as follows:

F = ∑
i

αiDi(ui). (3.3)

This energy function favors layer colors that have the best likelihoods ac-
cording to their corresponding color distributions, especially for the layers
with higher alpha values. Minimization of this energy subjected to the color
constraint makes sure that the resultant layers successfully represent the
color mixture that formed the observed pixel color. We minimize the color
unmixing energy for αi and ui simulatenously via the process detailed in
Section 3.1.1.

If we visualize the ith underlying colors for all pixels of the video frame with
their alpha values, we obtain the RGBA layer corresponding to the distribu-
tion N (µi, Σi). Green-screen keying can be seen as a special case where we
remove the RGBA layer corresponding to the green-screen background.

In contrast to our color unmixing method, related works on parametric
natural matting use Bayesian formulations with either local [Ruzon and
Tomasi, 2000; Chuang et al., 2001] or global models [Tai et al., 2007]. Local
methods solve for alpha values first and then estimate colors. On the other
hand, Tai et al. [2007] iteratively estimates the alpha values and colors for
all pixels of an input image, which makes it feasible for only low-resolution
images. In contrast, our formulation is easily parallelizable as each pixel is
treated independently, and thus, our method easily scales to HD resolutions
and beyond.

Sampling-based natural matting methods such as comprehensive sampling
[Shahrian et al., 2013] take alternate approaches to compute foreground layer
colors where they try all the possible background-foreground color pairs
to get the best match from a limited set of color samples. Certain priors

25



Interactive High-Quality Green-Screen Keying via Color Unmixing

commonly utilized by these methods, such as matte sparsity [Wang and
Cohen, 2007; Gastal and Oliveira, 2010], are often violated in green-screen
keying due to color spill.

On the other hand, commercial chroma-based keying tools simply suppress
the background green-screen color everywhere in the frame, which often
distorts the colors of the foreground objects especially if they are similar to
the color of the green-screen background. Around intricate object boundaries
or motion blur, they extend the foreground region without actually unmixing
the colors, and as a result they leave an unnatural halo around difficult
regions.

To summarize, the natural matting methods in the literature, as well as
commercial keying tools, fail to achieve production-level quality in green-
screen keying due to their various shortcomings discussed above. The main
advantages of our color unmixing formulation are the following:

• Our method does not enforce a matte-sparsity constraint, nor rely on
the suppression of the color of the green-screen background.

• Our formulation is highly scalable and parallelizable as each pixel is
processed independently.

• The proposed energy minimization successfully unmixes even mix-
tures of very similar colors (demonstrated later in Section 3.4.1) and
is agnostic to the scene colors, i.e. we do not require a strong chroma
or luma component as in commercial software.

• Similar to KNN Matting [Chen et al., 2013a], our method computes
multiple RGBA layers as its output, which enables further interesting
applications beyond green-screen matting, such as color editing.

3.1.1. Minimization of the Color Unmixing Energy

While the color unmixing energy F in (3.3) may seem straightforward, we
found that its minimization is non-trivial. Since the energy functionF and the
color constraint defined in (3.1) are nonlinear, we are faced with a nonlinearly
constrained nonlinear optimization problem. Specifically, the color constraint
in (3.1) constrains a single alpha value for three unknown underlying color
channels at once. This makes our energy functionF prone to get stuck in local
minima within the vicinity of the initial point if the constraints are enforced
from the start. What we need instead is an algorithm that strictly enforces
the constraints only after allowing to find some reasonable alpha and color
values first. To that end, we utilize the method referred as the original method
of multipliers [Bertsekas, 1982] as outlined in Algorithm 1.
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Algorithm 1: The Original Method of Multipliers
Input: x0

Define: k = 0, ρ0 = 0.1, λ0 =

[0.1
0.1
0.1
0.1

]
, β = 10, γ = 0.25, ε > 0

1: xk+1 = arg min
x

(
F (x) + λT

k G(x) + 1
2 ρk‖G(x)‖2

)
2: λk+1 = λk + ρkG(xk+1)

3: ρk+1 =

{
βρk if ‖G(xk+1)‖ > γ‖G(xk)‖
ρk otherwise

4: if ‖xk+1 − xk‖ > ε then
5: k← k + 1
6: go to Step 1
7: else
8: return xk+1

In order to pose the constraints as soft constraints at the beginning of the
optimization process, we express the deviation from the constraints in (3.1)
as:

Gα =

(
∑

i
αi − 1

)2

and Gu =

(
∑

i
(αiui)− c

)•2
, (3.4)

where (·)•2 denotes the elementwise squaring operation. This leads to the
constraint vector G =

[
GT

u Gα

]T
. The vector containing the variables x that

are the arguments of the optimization is:

x =
[
α1 . . . αN uT

1 . . . uT
N
]T . (3.5)

Note that x contains the variables for unmixing a single pixel. The optimiza-
tion is performed independently for every pixel, where for each pixel we
solve for both the alpha values and the underlying colors simultaneously.

The function minimized in Line 1 of Algorithm 1 is composed of the original
energy function and the deviations from the constraints. Minimization at this
step is done using the nonlinear conjugate gradient method that takes xk as
the initial value. The step size of the nonlinear conjugate gradient at each
iteration is determined by a line search in the direction determined via the
Polak–Ribière formula. The box constraints are enforced at each iteration of
the nonlinear conjugate gradient method by clipping the elements to be in
the range [0, 1] and setting the gradients of the elements at the boundaries 0
and 1 to zero if they are positive or negative, respectively. As the parameters
ρ(·) and λ(·) increase at each iteration (Lines 2 and 3), the energy F (x) is
minimized while allowing smaller and smaller deviations from the alpha
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and color constraints in Line 1. λ(·) punishes deviation from individual
constraints, while ρ(·) increases the constraint enforcement globally. The
input to Algorithm 1, initial values for αi and ui, are defined as:

αi =

{
1 if i = j
0 otherwise

ui =

{
c if i = j
µi otherwise

,

where j = arg miniDi(c), i.e. only the alpha value corresponding to the
most likely distribution in the color model is initialized to be 1. Note that
the optimization procedure we described is independent for each pixel in an
image.

3.2. Building the Color Model

The energy function F we defined in (3.3) requires a parametric representa-
tion of the colors that formed the color mixture which we refer as the color
model. A set of distributions is obtained in the first step of the user interaction
of our method. The resulting global color model (Section 3.2.1) is assumed
to be able to represent the whole image. The global color model is locally
overcomplete since very often each pixel color c is a mixture of only a subset
of the scene colors. We call the subset of distributions that participate in the
color mixture in a certain region of an image as the active color distributions.
In Section 3.2.2, we refine the global color model such that each pixel is as-
sociated only with its active color distributions. This refinement process is
performed automatically by utilizing a Markov Random Field optimization,
but we also allow the user to edit the resulting local color models in a second
user interaction step.

In comparison, commercial green-screen matting software packages offer a
multitude of interaction modes ranging from background/foreground color
selection to rotoscoping interfaces. They also typically offer user control
over various parameters that control the amount of chroma suppression,
matte blurring or matte bleed. Although this high level of control allows
compositing artists to fine-tune keying results, it also makes the process
highly time-consuming.

The goal of the user interaction in our method is to extract the information
we need to build the color model as intuitively and efficiently as possible.
Consecutively, instead of relying on complex user interactions like commer-
cial keying tools, we utilize a two-step interaction that involves drawing a
small number of scribbles (typically 7-8) and a pointing-and-clicking step.
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Figure 3.2.: The keying results generated using four different scribbles demonstrate the
robustness of our algorithm against different user inputs.

3.2.1. Global Color Model

The user interaction typically starts with the user loading the first frame of
an input video using the interface of our method. The goal of the first user
interaction step is building the global color model, which is achieved by the
user drawing a scribble over each of the dominant scene colors. The number
of the scribbles N, and hence the number of dominant scene colors, is deter-
mined by the user depending on the scene. For example, in Figure 3.9 (Our
result, input) each different color on the person’s wig is selected separately
as a dominant color, whereas in Figure 3.8 (Our result, input), the actor’s
natural hair color is marked as a single dominant color.

Each scribble identifying a dominant color is used to extract the parameters of
a distinct normal distribution. The mean and covariance of each distribution
are computed simply from the pixels underneath the corresponding scribbles.
Importantly, the results of our color unmixing method are not sensitive to the
exact placement, size or shape of the scribbles, as demonstrated in Figure 3.2.
This property is very useful in practice, as high-quality results can be obtained
quickly from roughly drawn scribbles. Additionally, once the global color
model is created for a single frame, it can typically be used for the remaining
frames of the shot assuming the dominant colors do not change significantly.

The motivation behind this first user interaction step is utilizing the inherently
good cognitive skills of the users for clustering colors. These cognitive skills
are especially helpful in dealing with specific situations such as the presence
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of strong color spill. Figure 3.14 (Original) shows an example where the color
of the actor’s robe is affected by the indirect illumination from the green-
screen, except for only very few small regions. In this case, recognizing the
color spill and selecting unaffected regions as a dominant color are trivial for
a human user while the same tasks are extremely difficult for an automatic
color clustering algorithm. In fact, although we experimented with methods
for automatically building the global color model (see Section 3.4.3), we found
that in most practical cases user interaction would be necessary, and therefore
favored our current interactive approach. The ability to select the dominant
colors also gives the user artistic control over the color composition of the
resulting RGBA layers, which is especially useful for compositing artists.

3.2.2. Local Color Model

One shortcoming of the global color model is the assumption that the color
of each pixel of the input video is a mixture of N underlying colors from
the N distributions that make up the color model. However, in practice, this
assumption is almost always incorrect. For example, in the original image
in Figure 3.3, skin tones are only present in a small region near the actor’s
face and neck. If we solely rely on the global color model, we would have
to use the distribution corresponding to the skin tones for unmixing pixels
in completely unrelated image regions, such as the far edges of the green-
screen background. This may cause the color unmixing to hallucinate non-
existent colors with small alpha values in such regions. Thus, we perform a
Markov Random Field (MRF)-based optimization procedure over superpixels
to estimate the active subset of color distributions for different regions in an
image.

The result of this optimization procedure can be edited through user in-
teraction via a simple point-and-click interface. Since the automatic color
activation is rather computationally costly, and it would be cumbersome to
perform the local color model edits repeatedly for every frame, we propagate
the local color model of an edited frame to the following frame through
simple superpixel matching. For every superpixel in a new frame, we find
a corresponding superpixel in the previous frame in a small spatial neigh-
borhood with the closest mean color. The active distributions of a superpixel
in the new frame is defined as the active distributions of its match in the
previous frame. An example local color models, a typical user edit, and
propagation to consecutive frames are illustrated in Figure 3.3.

The local color model computation step can loosely be related to the sample
selection process employed by sampling-based natural matting methods
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Figure 3.3.: Visualization: The result of local color model estimation can be visualized
as a cascade of layers that illustrate the active color distributions by their mean colors.
Editing: The MRF optimization for the local color models may fail to distinguish between
different objects with similar colors (such as the markers and the actor’s face), or may give
suboptimal results when one of the colors is present only faintly in a region (such as the
color spill in the actor’s hair from the green screen). Such situations can be alleviated by
refining the local color model via a simple point-and-click user interface. Propagation:
The user interaction can be streamlined by propagating the local color model to consecutive
frames.
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such as shared sampling [Gastal and Oliveira, 2010], where the goal is also to
find the best-fitting distributions for every pixel. However, their brute-force
approach is fundamentally different from our MRF optimization process.

Several natural matting methods such as comprehensive sampling [Shahrian
et al., 2013] utilize localized color models. While we select a subset of the
global color model as the local color model, comprehensive sampling esti-
mates a set of normal distributions from the closeby foreground and back-
ground regions for a mixed-color pixel. Although this approach provides
some robustness against complex backgrounds, it has several shortcomings
in the green-screen keying case. Under heavy color spill, estimating distribu-
tions locally is typically insufficient since the pure-color regions may occur
in a very limited part of the image and can not be integrated into the local
models. It also inherently increases the number of necessary distributions to
represent the image, making the direct user-edits inconvenient if not impossi-
ble. The resulting localized layers then require additional temporal coherency
steps to be applied to image sequences, since spatially they are expected to
change from frame to frame. Hence, we found our definition of local color
models as a subset of a global model to be practically well-fitting to our target
application of green-screen keying.

Local color model estimation

We represent the active distributions of a pixel as a binary vector A of length
N, and define the cost of activating a subset of distributions for a pixel as
the sum of two terms. The first term is the minimum energy defined in
(3.3) when the subset of distributions are fed to the energy minimization
algorithm detailed in Section 3.1, denoted by FA. The intuition here is that
if the optimization is conducted with distributions that fail to effectively
represent an observed color, the minimized energy will still be high. The
second term GA = ‖A‖, ‖ · ‖ representing the Euclidean norm, is added to
this cost in order to favor fewer active colors for each pixel. Following these
definitions, the unary potentials are defined as:

UA = FA + δGA, (3.7)

where δ is a user specified weight parameter typically in the range [5 10]. The
binary potentials between neighboring pixels are defined as:

Bp,q = ‖Ap − Aq‖e−‖cp−cq‖. (3.8)
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The energy function we want to minimize in order to determine active color
distributions is:

E = arg min
A(·)

∑
p
UAp + σ ∑

(p,q)∈Ω

Bp,q, (3.9)

where σ is the smoothness parameter, typically selected in the range [0.01 0.05]
and Ω is the set of 8-connected pixels.

The problem we defined in this section is analogous to multi-label segmen-
tation if we treat each possible subset of active color distributions as a label.
The minimization of the energy defined in (3.9) is NP-hard [Boykov et al.,
2001]. We approximate the global solution of this energy minimization us-
ing α− β swap algorithm presented in [Boykov et al., 2001], using the pub-
licly available implementation by the authors [Kolmogorov and Zabih, 2004;
Boykov and Kolmogorov, 2004].

Although we presented our energy formulation in this section at the pixel
level, computing FA for every subset and every pixel can be time-consuming
especially if N is high. In order to make the local color model estimation
more efficient, we instead construct the random field using SLIC superpix-
els [Achanta et al., 2012] (typically 10k superpixels for a 1080p frame). This
allows a user controllable trade-off between quality and computational effi-
ciency.

3.3. Common Practice in Green-Screen Keying

The industrial application of green-screen keying is done by digital artists
specialized in keying and compositing. The keying artists utilize a multitude
of commercial tools in orchestration. While this process may change from
artist to artist as well as from scene to scene, to see an keying with commercial
software in action, we asked an independent keying artist to give step-by-step
description of his work for an example image sequence.

Figure 3.4 shows several frames from the image sequence at the top, and
several screen captures from each step the artist took in the process. The
approximate time the artist had to spend at each step is also shown. The
process starts with extracting a clean plate, a full frame of only the background
without the actor, by combining different frames together (a). The clean plate
is very helpful for the following steps, but its estimation is only possible
thanks to the stationary camera setup. The artist then generates several initial
alpha estimates using different tools, including IBK (b) and Primatte (d).
Luma keying, a keying method that depends on the brightness of the pixels
rather than their color, is utilized to capture the dark areas such as the actor’s
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Figure 3.4.: Step-by-step description of the keying process for the video shown at the top
by an independent professional keying artist using multiple industrial keying software.
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hair and belt (e). These initial mattes are merged (f) and cleaned using simple
tools (g).

The steps until now provide a very rough estimate of the foreground matte.
The artist moves on to fix errors frame by frame by drawing masks by hand
(h). Then the color spill on the actor is removed with a special attention to
the actor’s hair (i). Although we are interested in the keying result only, the
artist informed us that the following corrections are typically done on a target
background to identify the most visible issues with the keying result (j). In
the final step, the overestimation of alpha values around the edges of the
foreground is fixed frame by frame. While the matte is quite clean at this
stage, the artist informed us that this result is only used as an initial point in
a compositing framework, and further errors are fixed by painting the matte
for the optimal result in a very time demanding procedure.

In contrast, our two-step interaction process determining the color models
is intuitive for a non-expert, does not change from scene to scene, and takes
one-tenth of the total interaction time when compared to the industrial keying
procedure. In Section 3.4, we show that our keying results are on par with, if
not better than, the use of commercial software.

3.4. Experimental Evaluation

Our method is suitable for parallel computation as discussed in Section 3.1.
For a 1080p frame, our current C++/CUDA implementation typically re-
quires 10 seconds for local color estimation (assuming 8 dominant colors),
another second to propagate the local color model to the following frame,
and approximately 3 seconds for color unmixing. Thus, at this resolution,
the total computation time for a still image is 13 seconds, which drops to 4
seconds per frame for image sequences.

In this section, we evaluate our method and present results for various
applications. In the absence of a comprehensive ground truth dataset of
green-screen content, in our experiments, we utilize computer generated
ground truth, as well as keying results generated by a paid independent
professional compositing artist. In contrast, all user interaction with our
method was performed by people with no prior experience in digital keying
or compositing.
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Figure 3.5.: The mean squared error plotted with respect to the distance between the
distributions in the color model. The rightmost images show two cases where distributions
are very distinct. The leftmost images are at the point that our energy function starts to
fail at discriminating between colors, effectively illustrating the limits of the proposed color
unmixing.

3.4.1. Statistical Validation

In this experiment, we test how distinct two colors have to be for our un-
mixing algorithm to work successfully. To that end, we generated a total
of 480 images, each obtained overlaying 2 or 3 images created by randomly
sampling from one of 720 different normal distributions with varying mean
vectors and covariance matrices. The images were overlayed via a known
alpha matte, which served also as the ground truth. Examples of these test
images are shown in Figure 3.5. For the distinctiveness measure, we use Bhat-
tacharyya distance that models the amount of overlap between two normal
distributions. For two distributions N (µi, Σi) and N (µj, Σj), Bhattacharyya
distance is defined as

1
8
(µi − µj)

TΣ−1(µi − µj) +
1
2

ln
det

(
0.5
(
Σi + Σj

))√
det (Σi)det

(
Σj
) (3.10)

Figure 3.5 shows that our method can successfully unmix colors up to a point
when they become hard to distinguish by a human observer.
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Ball Kong Swing

Figure 3.6.: Three animated image sequences are overlayed onto a challenging green-
screen in order to create data with ground truth. Ball represents a simple scene with high
motion blur, while Kong and Swing represent live action scenes with fast motion.

Table 3.1.: Quantitative comparison of the proposed algorithm with industrial keying
tools using minimal or optimal user interaction.

1000 ×MSE Color 1000 ×MSE Alpha
Ball Kong Swing Ball Kong Swing

IBK 0.0170 0.0553 0.1139 0.5353 0.5954 2.1232 M
inim

al

Keylight 1.6001 0.5247 0.4831 2.3645 1.3389 2.7036
Primatte 5.8097 1.6830 27.0635 6.8404 2.6980 32.0337

Ours 0.0096 0.0250 0.0489 0.1286 0.4114 1.2722
IBK 0.0129 0.0504 0.1658 0.0583 0.1510 0.2291 O

ptim
al

Keylight 0.0239 0.0842 0.1301 0.0200 0.4841 0.1583
Primatte 0.0492 0.2348 0.2587 0.1391 0.5487 0.6166

Ours 0.0034 0.0189 0.0304 0.0089 0.0421 0.0585

3.4.2. Evaluation on Synthetic Video

Due to the absence of ground-truth data for green-screen keying, we prepared
a test set of computer generated video sequences (Figure 3.6) rendered with a
live-action green-screen in the background. We used this ground truth data
to compare the performance of our method with three leading commercial
keying tools (IBK, Keylight, and Primatte). In a first experiment, we compared
the out-of-the-box performance by providing only minimal user input to all
methods, i.e. by selecting a reasonable background color for the commercial
tools and selecting 5-9 dominant colors for our method.

In a second experiment, we asked a paid compositing artist to generate the
best possible result separately with each commercial tool. The artist reported
spending 105-120 minutes with each tool. For comparison, we also processed
the same sequences with our method to achieve the best possible keying
result, for which we spent 10 minutes mostly refining the local color maps.

Table 3.1 shows that our keying results are objectively better than the three
commercial tools for all test sequences, both with minimal and optimal level
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Figure 3.7.: The results of our algorithm when the color model is inferred from the
scribbles (b) and when the color model is estimated by expectation maximization using
different numbers of distributions (10 for (c), 6 for (d) and 4 for (e)). The EM algorithm
is run using all the pixels in a small region of interest (a). The highlighted colors are the
colors estimated by EM that are closest to our original four distributions.

of user input. In some cases, such as the performance of Primatte in the Swing
sequence, we observed that further processing by the artist is essential to get
a more reasonable result, which means that for a novice user, it is harder to
get a good initial estimate. Note also that the user interaction of our method
is an order of magnitude more efficient when one seeks to obtain the best
possible result.

3.4.3. Color Model Estimation using EM

As an alternative to scribble-based interaction to infer the global color model,
we tried to estimate the distributions using expectation maximization.

The main problem with expectation maximization is that it is unable to
separate the areas with color spill (indirect illumination from the green-
screen material) from the clean areas. As Figure 3.7 shows, the distribution
corresponding to the white robe of the actor appears greenish regardless
of the number of distributions estimated by EM. This is expected since the
pure white color appears in very limited regions while the greenish white is
dominant due to the strong color spill. Using our scribble interface, the user
can select regions without color spill and our color unmixing algorithm is
able to separate the spill from the robe.
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Figure 3.8.: Results of KNN matting [Chen et al., 2013a] (KNN), shared matting [Gastal
and Oliveira, 2010] (SM), weighted color and texture sampling [Shahrian and Rajan,
2012] (WCTS) and comprehensive sampling [Shahrian et al., 2013] (CS) are presented
using different trimaps together with our input scribbles and keying results. Note that
our scribbles are drawn on the first frames of the corresponding videos. Plate (a) shows
an example with intricate object boundaries as well as translucent regions, and (b) shows
another example with many foreground colors which also include a green tone close to the
background color.

3.4.4. Green-Screen Keying

Comparison with natural alpha matting methods

We compare our method to four natural matting methods with publicly avail-
able implementations. All four methods, namely KNN matting (KNN) [Chen
et al., 2013a], shared matting (SM) [Gastal and Oliveira, 2010], weighted color
and texture sampling (WCTS) [Shahrian and Rajan, 2012] and comprehensive
sampling (CS) [Shahrian et al., 2013] compute not only alpha values but also
the corresponding foreground colors. For this comparison, following the
procedure from the alpha matting benchmark [Rhemann et al., 2009], we
first prepared a very detailed and narrow trimap and dilated the unknown
regions by 6 and 12 pixels to obtain two additional trimaps. For scenes with
substantial color spill, we prepared two sets of trimaps, where one considers
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Figure 3.9.: Figure 3.8 continued.
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input Grundhofer et al. 2010 Ours

Figure 3.10.: Our result obtained using only the image with the green background is
comparable to Grundhöfer et al. [2010]’s result obtained with both input images.

the regions with spill as unknown, and the other as foreground. The final
trimaps and corresponding results can be seen in Figure 3.8.

The intricate object boundaries in Figure 3.8 demonstrate a fail case for sample
selection strategies of WCTS and CS as they partly use samples from the
actor’s face rather than his hair, causing the hair to appear to have a red
hue. SM gives the cleanest result in this case among the natural matting
methods. Figure 3.9, shows that the presence of the color green on the actor’s
wig degrades the performance of KNN, WCTS, and CS while the local color
model assumption of SM helps to extract a cleaner foreground. However,
SM fails to extract the fine details as our method does, possibly due to the
sparsity assumption of SM.

The scenes shown in Figures 3.8 and 3.9 are selected to highlight several chal-
lenges of green-screen keying. The results show that our method performs
favorably against the state-of-the-art natural matting methods.

Comparison with commercial keying software

Several methods have been proposed to solve the keying problem by
capturing the same foreground against different background colors. Fig-
ure 3.10 shows that our algorithm gives comparable results to such a
method [Grundhöfer et al., 2010] using only a single background.

The keying tools that are widely used in production do not rely on any special
setups. In this section, we compare our method with some of the leading
commercial keying tools, namely Keylight, Primatte and IBK. To that end, we
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Figure 3.11.: Commercial keying tools, even when operated by a specialized compositing
artist, may not be able to extract the fine details near intricate object boundaries while our
algorithm is robust against such challenging regions.
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Figure 3.12.: Commercial keying tools, even when operated by a specialized compositing
artist, may fail to extract highly blurred objects while our algorithm is robust against such
challenging regions.

Figure 3.13.: Commercial keying tools, even when operated by a specialized compositing
artist, may distort the foreground color if it is similar to the background color while our
algorithm is robust against such challenging regions.
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Figure 3.14.: Commercial keying tools, even when operated by a specialized compositing
artist, may create unnatural artifacts around blurred regions while our algorithm is robust
against such challenging regions.

used green-screen shots from the open source movie Tears of Steel1 as well as
some content that we shot with a Sony α7s camera.

In order to present a fair comparison, we asked a paid professional com-
positing artist to generate a separate result with each tool for each test scene.
Based on the artist’s feedback that in most real world scenarios all three tools
would be used sequentially to take advantage of their individual strengths,
we decided to ask the artist also to generate another set of result where he is
allowed to use all of the three tools. We did not impose any constraints on
the artist other than asking him to avoid manually painting pixels. A step-by-
step description of the keying by the artist for one of our test sequences in
presented in Section 3.3.

1(CC) Blender Foundation — mango.blender.org
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Figure 3.15.: Close-up around the same single filament in several frames of the video.
Notice that the filament that sticks out is captured using our method even when it is
motion-blurred (middle), but the artist was only able to capture it in some of the frames
(bottom).

For the four sequences in our test set, the artist reported a total of 9 hours to
get the results using multiple tools and reported an estimated 12 hours for
fixing any remaining issues. Our results, on the other hand, were generated
by ourselves using our tool in less than an hour. Almost the entire time was
spent on refining the local color models using point and click interface of our
method.

The results presented in Figures 3.11–3.14 show that our results compare
favorably to the artist’s results, even when the artist uses all the tools at
his disposal and spends approximately an order of magnitude more time
on manual editing. Additionally, the complex workflow and heavy local
editing employed by the artist may result in temporal coherence artifacts. In
contrast, our results for the same sequences do not suffer from such artifacts,
as illustrated in Figure 3.15.

Because of the high amount of spill on the actor in scenes shown in Fig-
ures 3.12 and 3.14, actors appear transparent in the extracted foreground
layer. Discriminating between transparency occurring from color spill or
motion blur in a principled way is not a trivial problem. In order to account
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Figure 3.16.: The main real-world application of our method is digital compositing. The
figure shows a number of toy examples that we generated using the foreground layers
obtained with our prototype implementation. Background images courtesy of Flickr users
milanboers (a) and jeremylevinedesign (c).

Figure 3.17.: Despite the very complex scene structure, our algorithm successfully
removes the sky in the background, demonstrating an advantage of our per-pixel approach
to color unmixing that does not rely on spatial cues.
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(a)

(b)

(c)

Figure 3.18.: The layers computed by our algorithm is used to replace the background (b)
and change the color of the blurred object (c) while retaining the reflections. Note that the
result images are color graded while compositing. Background image courtesy of Flickr
user davejdoe.

for this, we apply a simple post processing composed of boosting α values of
the foreground layers with high spill to 1 except for the edges of the layers.
For instance, the layer corresponding to the white robe in Figure 3.14 appears
transparent after color unmixing. The robe layer is post-processed such that
it has unity alpha values in regions that are not on the edges of the robe.
The edges are left untouched to account for the smooth transition and the
motion blur around the edges. While this post-processing is not completely
fool-proof, i.e. its performance will degrade if there is strong color spill on
layers with high transparency, we found it to be helpful for compositing and
left the classification of non-unity alpha values to color-spill or transparency
as a future work. Figure 3.16 shows examples compositing results generated
using the foreground layers extracted by our method.
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Figure 3.19.: We changed the illumination or contrast of the input frame and extracted
the foreground using the same color model constructed from the original image (a). With
rather slight changes (b, d), our method is able to successfully extract the foreground.
With a significant change in brightness (c), we observe a drop in the performance of our
method, characterized by the halo around the actor. On the other hand, with very significant
contrast change (e), some intricate details are missed and the background color remains in
some small regions in the foreground.

We also tested our method using scenes with non-green-screen backgrounds.
Figure 3.17 shows an example in which our per-pixel color unmixing ap-
proach proves to be robust against complex foreground structures. Another
example, one that includes reflections from a semi-transparent medium, is
shown in Figure 3.18. While the backgrounds in these examples are admit-
tedly simple, these results suggest that our method could be useful for an
extended set of applications beyond green-screen keying. However, it is
worth noting that our method is limited to simple backgrounds and is not
suitable for general purpose natural matting.

3.5. Limitations

While in our experiments we have not noticed any significant temporal
consistency issues, our test scenes had admittedly near constant illumination.
In practice, keying may need to be performed in outdoor scenes (such as
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Figure 3.20.: When our assumption of a small number of scene colors is satisfied, we are
able to get a successful foreground layer (left), but the quality drops significantly otherwise.
Images courtesy of Rhemann et al.[2009].

driving), where the illumination can change drastically from one frame to
another. Due to the absence of any mechanism to enforce temporal coherence,
we expect the performance of our method to decrease in such settings, as
demonstrated in Figure 3.19.

The global color model as a small set of distributions may not be able to
effectively represent non-green-screen backgrounds We tested our method on
several images from the alpha matting benchmark [Rhemann et al., 2009]. Fig-
ure 3.20 shows typical natural matting results where our method works well
when our main assumptions are satisfied, but fails when they are violated.

Our scribble interface for extracting the color model requires the unmixed
colors to be present in at least one of the frames. For highly transparent media
such as thin smoke, the pure color can not be determined via the proposed
interaction and hence it is not possible for our keying system to extract the
layer with only smoke. Devising an algorithm that can infer the colors that
only appear mixed with others in a scene is an interesting direction for further
research.

The proposed color unmixing algorithm may slightly overestimate the alpha
values of some layers in some cases. Since the energy minimization favors
underlying colors that are closer to the mean vector of the distributions,
the foreground layer might get a small portion of the color mixture since
matte sparsity is not enforced in the color unmixing energy minimization by
design. This mainly occurs when the underlying color of one of the layers
are not well-represented by the corresponding distribution. These artificially
occurring alpha values being very small, we observed that this behavior does
not result in any disturbing artifacts in green-screen keying.
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C H A P T E R 4
Unmixing-Based Soft Color
Segmentation for Image Manipulation

Our main objective here is to decompose an image into multiple partially-
transparent segments of homogeneous colors, i.e. soft color segments, which
can then be used for various image manipulation tasks. At its core, the soft
color segments represent the image in terms of mixtures of the segment colors
at each pixel. Hence, the per-pixel per-layer opacities, or alpha values, can
be seen as the mixing ratios that form the pixel color. Borrowing from image
manipulation terminology, we will refer to such soft segments simply as layers.
An example set of sofr color segments and their use in image manipulation
can be seen in Figure 4.1.

A crucial property of soft color segmentation is that overlaying all layers ob-
tained from an image yields the original image itself so that editing individual
layers is possible without degrading the original image. In mathematical
terms, for a pixel p, we denote the opacity value as α

p
i and the layer color in

RGB as up
i for the ith layer. and we want to satisfy the color constraint:

∑
i

α
p
i up

i = cp ∀p, (4.1)

where cp denotes the original color of the pixel. The total number of layers
will be denoted by N.

We assume that the original input image is fully opaque, and thus require
the opacity values over all layers to add up to unity, which we express as the
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Figure 4.1.: Our method automatically decomposes an input image (a) into a set of soft
segments (b). In practice, these soft segments can be treated as layers that are commonly
utilized in image manipulation software. Using this relation, we achieve compelling results
in color editing (c), compositing (d), and many other image manipulation applications
conveniently under a unified framework.

alpha constraint:
∑

i
α

p
i = 1 ∀p. (4.2)

Finally, the permissible range for the alpha and color values are enforced by
the box constraint:

α
p
i , up

i ∈ [0, 1] ∀i, p. (4.3)

For convenience, we will drop the superscript p in the rest of our discussion
and present our formulation at the pixel level, unless stated otherwise.

An important property of soft color segments that allows them to be used for
image manipulation is their spatial coherency. In their estimation, as a result,
the similarity of the layer colors and opacities in local neighborhoods has been
heavily utilized in the literature. The resulting global optimization problems
are typically very large, and suffer from high computation times and quality
issues due to local minima. In this chapter, we break this global optimization
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problem into three sub-problems each of which guarantee that one of the
quality requirements of soft color segments is satisfied. The optimization
procedures in these sub-problems can be implemented efficiently and with
parallelization, making our method applicable to everyday image editing
tasks.

It should be noted that different representations for overlaying multiple
layers exist. We use (4.1), to which we refer as alpha-add representation, in our
formulation which does not assume any particular ordering of the layers. This
representation has also been used by Tai et al. [2007] and Chen et al. [2013a]
among others. In most commercial image editing software, however, the
representation proposed by Porter and Duff [1984], referred to in this section
as overlay representation, is used. The difference and conversion between the
two representations are presented in Section 4.2.1.

4.1. Three-Stage Soft Color Segmentation

Our algorithm for computing high-quality soft color segments can be de-
scribed by three stages: color unmixing, matte regularization, and color
refinement.

Color Unmixing: An important property we want to achieve within each
layer is color homogeneity: the colors present in a layer should be sufficiently
similar. To this end, we associate each layer with a 3D normal distribution
representing the spread of the layer colors in RGB space, and we refer to the
set of N distributions as the color model. While we obtained the color model
interactively for the problem of green-screen keying in Chapter 4, for the
purpose of soft color segmentation, we will put forward a novel technique
for its automatical extraction in Section 4.3.

We extend the color unmixing energy defined in (3.3) to better fit the soft
color segmentation problem, and propose the sparse color unmixing energy
function in order to find a preliminary approximation to the layer colors and
opacities:

FS = ∑
i

αiDi(ui) + σ

(
∑i αi

∑i α2
i
− 1

)
, (4.4)

where the layer color cost Di(ui) is defined as the squared Mahalanobis
distance of the layer color ui to the layer distribution N (µi, Σi), and σ is the
sparsity weight that is set to 10 in our implementation. The energy function
in (4.4) is minimized for all αi and ui simultaneously while satisfying the
constraints defined in (4.1)-(4.3) using the optimization scheme detailed in
Section 3.1.1. For each pixel, for the layer with best fitting distribution, we
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Figure 4.2.: The original image (a) is shown with layers and their alpha channels corre-
sponding to the yellow of the road lines estimated by the proposed sparse color unmixing (b)
and by the color unmixing (c). Notice the spurious alpha values on the road in (c). When
our sparse color unmixing results are utilized for a color change (d) the regions that do not
contain the yellow of the road are not affected. On the other hand, a color change using the
color unmixing (e) effects unrelated regions as well. The color change was applied after
matte regularization and color refinement stages for both (d) and (e).

initialize the alpha value to 1 and the layer color ui to the pixel color. The
rest of the layers are initialized to zero alpha value and the mean of their
distributions as layer colors. The first term in (4.4), the color unmixing energy,
favors layer colors that fit well with the corresponding distribution especially
for layers with high alpha values, which is essential for getting homogeneous
colors in each layer. The second term pushes the alpha values to be sparse, i.e.
favors 0 or 1 alpha values.

In the original color unmixing formulation, we do not include a sparsity term
and this inherently results in favoring small alpha values as discussed in
Chapter 3, which results in many layers appearing in regions that should
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actually be opaque in a single layer. The reason is that a better-fitting layer
color for the layer with alpha close to 1 (hence a lower color unmixing energy)
becomes favorable by leaking small contributions from others (assigning
small alpha values to multiple layers) with virtually no additional cost as
the sample costs are multiplied with alpha values in the color unmixing
energy. We used this property to our favor for green-screen keying, where
enforcing matte sparsity would result in worse performance around regions
with color spill. The use of local color models in our interactive keying
scheme helped us circumvene the issues raised by the lack of a sparsity
term. However, for a fully automatic soft color segmentation, we require a
compact layer representation to avoid visual artifacts when the layers are
edited independently. Figure 4.2 shows such an example obtained through
minimizing the color unmixing energy, where the alpha channel of the layer
that captures the yellow road line is noisy on the asphalt region, even though
the yellow of the road is not a part of the color of the asphalt. While these
errors might seem insignificant at first, they result in unintended changes in
the image when subjected to various layer manipulation operations such as
contrast enhancement and color changes, as demonstrated in Figure 4.2.

The sparsity term in (4.4) is zero when one of the layers is fully opaque (and
thus all other layers are fully transparent), and increases as the alpha values
move away from zero or one. Another term for favoring matte sparsity has
been proposed by Levin et al. [2008b]:

∑
i
|αi|0.9 + |1− αi|0.9. (4.5)

This cost is infinitely differentiable in the interval [0, 1]. Its infinite derivatives
at αi = 0+ and αi = 1− causes the alpha values to stay at these extremes in
the optimization process we employ. In spectral matting, the behavior of this
function is used to keep alpha values from taking values outside [0, 1]. In our
case, as the box constraints are enforced during the optimization of the sparse
color unmixing energy, the negative values our sparsity cost takes outside
the interval do not affect our results adversely.

Matte Regularization: Sparse color unmixing is done independently for
each pixel and there is no term ensuring spatial coherency. This may result in
sudden changes in opacities that do not quite agree with the underlying image
texture, as shown in Figure 4.3(b). Hence, spatial regularization of the opacity
channels is necessary for ensuring smooth layers as in Figure 4.3(c). This
issue also occurs frequently in sampling-based natural matting. The common
practice for alpha regularization is using the matting Laplacian introduced by
Levin et al. [2008a] as the smoothness term and solve a linear system that also
includes the spatially non-coherent alpha values, as proposed by Gastal and

55



Unmixing-Based Soft Color Segmentation for Image Manipulation

Figure 4.3.: Two layers corresponding to the dark and light wood colors in the original
image (a) are shown before (b) and after (c) matte regularization and color refinement.

Oliveira [2010]. While this method is very effective in regularizing mattes, on
the downside, it is computationally expensive and consumes a high amount
of memory especially as the image resolution increases.

The guided filter proposed by He et al. [2013] provides an efficient way
to filter any image using the texture information from a particular image,
referred to as the guide image. The guided filter is an edge-aware filtering
method that can make use of an image, the guide image, to extract the edge
characteristics and filter a second image using the edge information from
the guide image efficiently. They discuss the theoretical similarity between
their filter and the matting Laplacian and show that getting satisfactory alpha
mattes is possible through guided filtering when the original image is used
as the guide image. While filtering the mattes with the guided filter only
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approximates the behavior of the matting Laplacian, we observed that this
approximation provides sufficient quality for the mattes obtained through
sparse color unmixing. For a 1 MP image, we use 60 as the filter radius and
10−4 as ε for the guided filter, as recommended by He et al. [2013] for matting,
to regularize the alpha matte of each layer. As the resultant alpha values
do not necessarily add up to 1, we normalize the sum of the alpha values
for each pixel after filtering to get rid of small deviations from the alpha
constraint. The filter radius is scaled according to the image resolution. Note
that the layer colors are not affected by this filtering and they will be updated
in the next step.

While enforcing spatial coherency on opacity channels is trivial using off-the-
shelf filtering, dealing with its side effects is not straightforward. Obtaining
spatially smooth results while avoiding disturbing color artifacts requires a
second step that we discuss next.

Color Refinement: As the original alpha values are modified due to regu-
larization, we can no longer guarantee that all pixels still satisfy the color
constraint defined in (4.1). Violating the color constraint in general severely
limits the ability to use soft segments for image manipulation. For illustra-
tion, Figure 4.6 shows a pair of examples where KNN matting fails to satisfy
the color constraint, which results in unintended color shifts in their results.
To avoid such artifacts, we introduce a second energy minimization step,
where we replace the alpha constraint defined in (4.2) in the color unmixing
formulation with the following term that forces the final alpha values to be
as close as possible to the regularized alpha values:

∑
i
(αi − α̂i)

2 = 0, (4.6)

where α̂i represents the regularized alpha value of the ith layer. By running
the energy minimization using this constraint, we recompute unmixed colors
at all layers so that they satisfy the color constraint while retaining spatial
coherency of the alpha channel. Note that since the alpha values are deter-
mined prior to this second optimization, the sparsity term in (4.4) becomes
irrelevant. Hence, we only employ the unmixing term of the energy in this
step. For the optimization, we initialize the layer colors as the values found
in the previous energy minimization step.

Finally, to summarize our color unmixing process: we first minimize the
sparse color unmixing energy in (4.4) for every pixel independently. We
then regularize the alpha channels of the soft layers using the guided filter
and refine the colors by running the energy minimization once again, this
time augmented with the new alpha constraint defined in (4.6). This way
we achieve soft segments that satisfy the fundamental color, alpha, and box
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constraints, as well as the matte sparsity and spatial coherency requirements
for high-quality soft-segmentation.

Note that the two energy minimization steps are computed independently
for each pixel, and the guided filter can be implemented as a series of box
filters. These properties make our algorithm easily parallelizable and highly
scalable.

4.2. Analysis of State-of-the-Art

While the particular deficiencies of current soft color segmentation methods
will be apparent from the qualitative and quantitative evaluation results in
Section 4.4, our goal in this section is to highlight the theoretical reasons
behind some of those deficiencies. To this end, we take a closer look at the
formulations of the current methods.

The soft color segmentation methods in the literature can be categorized into
two classes: unmixing-based and affinity-based. Unmixing-based methods
such as [Tai et al., 2007] and ours attempt to get unmixed colors and their
corresponding alpha values by processing the observed color of each pixel
with a statistical model for the layers. The method by Tan et al [2016] can
loosely be categorized as unmixing-based as it computes the alpha values
using a (non-statistical) color model using fixed layer colors. Affinity-based
methods [Singaraju and Vidal, 2011; Chen et al., 2013a], on the other hand,
aim to use local or non-local pixel proximities to propagate a set of given
labels to the rest of the image.

Alternating Optimization (AO): The alternating optimization algorithm pro-
posed by Tai et al. [2007] is similar to ours in terms of the end goal. The
authors define a Bayesian formulation that includes the alpha values, the
layer colors, as well as the color model for the soft color segments and find the
maximum a priori (MAP) solution to the problem by alternatingly optimizing
for the alpha values, the layer colors, and the color model parameters. Here,
we will only analyze AO’s alpha and layer color estimation formulations,
and defer the discussion on its color model estimation to Section 4.3.

AO estimates the alpha values by defining a Markov random field that
encodes the probability of the alpha values given the layer colors and the
color model. After some algebraic manipulation, their maximization can be
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Figure 4.4.: The layers corresponding to the outer region of the northern lights in the
input image (a) computed by the proposed algorithm (b), color unmixing (c) and alternating
optimization (d). Notice that the layers in (c, d) have abrupt edges in opacity while our
result has a smooth transition following the input image content. Note that AO’s result
already has smoothness enforced in their optimization procedure. A comparison of our
results and that of CU after our matte regularization is presented in Figure 4.2.

expressed as minimizing Eα = ∑p E
p
α , with E p

α defined as:

E p
α =

1
2σ2

c
‖cp −∑

i
α

p
i up

i ‖
2 +

1
σ2

c
∑

i
α

p
i Di(ui)+ (4.7a)

∑
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1 +
1

2σb

√∑
i

(
α

p
i − α

q
i
)2

 , (4.7b)

where Np is the 8-neighborhood of the pixel p and σb and σc are algorithmic
constants. The color unmixing energy actually appears as the second term in
(4.7a) together with the color constraint, whereas (4.7b) shows the smoothness
term. The MAP estimation in AO is done via loopy belief propagation. They
assign the soft labels assigned by the belief propagation algorithm as the
alpha values. This global optimization scheme becomes a limiting factor for
AO in scaling to high-resolution images.
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Due to the iterative nature of the algorithm, in the alpha estimation step,
AO uses the color values from the previous iteration. Hence, it will find
a compromise between the optimal alpha values and satisfying the color
constraint, which is to be corrected in the color estimation step. Experimen-
tally, we observed that this interdependency, when also coupled with the
interdependency with the color model estimation, may result in layers oscil-
lating between two local minima as the iterations progress. The smoothness
term, on the other hand, depends on how close the estimated alpha values
from the previous iteration are, rather than using the image texture. Their
results typically have unnatural gradients in layer alphas as it can be seen in
Figure 4.4.

Decomposition via RGB-Space Geometry (RGBSG): Tan et al. [2016] use a
different approach to the soft color unmixing problem by fixing the layer
colors beforehand and optimizing for the opacity values. Different than all
the approaches discussed in this section as well as ours, they use the overlay
layers representation as defined Section 4.2.1. This representation requires
a pre-determined ordering of the layers, and RGBSG requires this ordering
as input before the decomposition. The main advantage of using alpha-add
representation over overlay representation can be said to be the indifference
to layer order, which decreases the amount of user input needed. However,
their end goal and application scenario is similar to ours.

They construct a color model that encompasses the hull of the RGB values
in the image, which will be discussed in Section 4.3.2, and fix ui’s to these
predetermined values. They define their energy function as:

ERGBSG = ωpEp + ωoEo + ωsEs

Ep =
1
K

∥∥∥∥∥un − c + ∑
i

(
(ui−1 − ui)

N

∏
j=i

(1− α̃j)

)∥∥∥∥∥
2

Eo =
1
N ∑

i
−(1− α̃i)

2 Es =
1
N ∑

i
(∇α̃i)

2,

(4.8)

where K is 3 or 4 depending on whether they use RGB or RGBA optimization
as defined in their paper, ∇α̃i is the opacity gradient, and ωp = 375, ωo = 1
and ωs = 100 are algorithmic constants. Notice the use of α̃ as opposed to α

due to their compositing formulation. As the layer colors are determined with
the color model, this optimization only determines the opacity values, unlike
the other unmixing-based approaches. The color constraint is satisfied with
the Ep term while sparsity and smoothness is enforced via the Eo and Es terms,
respectively. Characteristically, their sparseness energy is somewhat similar
to ours as it also depends on the sum of square of the alpha values. Their
smoothness measure follows that of AO as it also depends on the smoothness
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of alpha values, rather than the image texture. Their layers do not necessarily
give the original image when overlayed due to the possibility of imaginary
colors in their color model, as will be discussed in Section 4.3.2. However,
their layers have solid colors by definition.

One particular characteristic of RGBSG is that it requires a color model that
encompasses all the colors that appear in the image from the outside. This
requirement is sometimes limiting as the layers can not have colors that are
close to the center of the RGB cube. A demonstration of this behaviour is
presented in Figure 4.9.

Multiple Image Layer Estimation (ML): Multiple image layer estimation
method [Singaraju and Vidal, 2011] makes use of the matting Laplacian pro-
posed by Levin et al. [2008a]. The matting Laplacian encodes local affinities
that effectively represent the alpha propagation between neighboring pixels.
ML formulates the problem of estimating multiple soft layers into several
sub-problems of 2-layer estimation. Their formulation allows the estimation
of N layers in closed-form. However, they discuss in depth that it is not
possible to solve for the layer alphas in closed-form while satisfying both
non-negative alpha values and the alpha values summing up to 1 for N > 2.

Spectral Matting (SM): While we will go into the details further in Chapter 6,
it is worth mentioning here that the soft segmentation (as opposed to soft
color segmentation) method spectral matting [Levin et al., 2008b] also extracts
multiple layers by making use of the matting Laplacian. SM defines matting
components, soft segments that can be determined as the eigenvectors of the
matting Laplacian corresponding to its smallest eigenvalues. By making use
of the sparsity prior shown in (4.5), they find N plausible matting components,
N being the number of layers specified by the user. The primary aim of
SM is to extract spatially connected soft segments, rather than layers of
homogeneous colors.

Both ML and SM only estimate the alpha values. In order to get the layer
colors, an additional step is needed for each of them. ML uses the layer
color estimation method proposed by Levin et al. [2008a]. In this method,
the authors define an energy for estimating the foreground and background
colors (only for the N = 2 case) that make use of layer alpha and color
derivatives:

∑
p
‖ cp −∑

i
α

p
i up

i ‖
2 +

[
∇xα0
∇yα0

]T

∑
i

[
∇xuT

i ∇xui
∇yuT

i ∇yui

]
(4.9)

This energy, which takes the alpha values as input, propagates the color
values in the image to get plausible colors agreeing with the alpha values. As
the color constraint is only one of the terms in the energy, the result does not
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Figure 4.5.: A layer extracted by the proposed method (b) and KNN Matting (c). KNN’s
hard constraints on alpha values may cause artifacts as shown in the inset.

necessarily satisfy the color constraint. While this is not a big issue when the
colors of a single layer, i.e. a predefined foreground layer, is estimated, this
becomes problematic in terms of soft color segmentation.

KNN Matting (KNN): KNN matting [Chen et al., 2013a], in contrast to SM
and ML, uses non-local affinities that are computed using the neighbors of
each pixel in a feature space rather than only spatially close-by pixels. They
also transform the layer estimation problem into a sparse linear system and
solve for the alpha values of each layer separately. Unlike ML, they show
that their algorithm naturally satisfies the constraint that the alpha values
sum to one. While the non-local approach, in fact, produces higher-quality
soft layers when compared to its local counterparts, the sparse affinity matrix
they construct ends up having many entries far away from the diagonal. This
significantly increases the run-time to be able to solve the linear system. KNN
puts hard constraints around the seed pixels and this frequently results in
disturbing blockiness artifacts due to their affinity definition as shown in
Figure 4.5.

KNN matting proposes a layer color estimation algorithm that follows their
non-local approach. By making a smoothness assumption on layer colors,
they again propose a sparse linear system for estimating layer colors and
solve for them for each layer independently. We will discuss their layer color
estimation further in Section 5.3. We observed that independently solving for
each layer fails to satisfy the color constraint in the final result, as shown in
Figure 4.6. This is highly undesirable especially for image editing applications
because of the information loss on the original image prior to editing.

To summarize, the main advantages of our method are satisfying all the
constraints and requirements that we discussed in Section 4.1, not requiring
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Figure 4.6.: Our layers, when overlaid (b), give us the original image (a), while layers
extracted by KNN matting may result in erroneous reconstruction (c) by failing to satisfy
the color constraint. The effect may be local color loss such as the lips in the top image or a
global degradation of image quality as seen in the bottom image.

a pre-determined layer ordering, as well as providing smooth transitions
between layers and its per-pixel formulation that permits efficient imple-
mentation and scalability to high-resolution images. In contrast, any other
soft color segmentation method we analyzed in this section fails in at least
one aspect. Scalability is especially crucial for practical applications, as in
terms of both computation time and memory consumption, current methods
fail to scale to resolutions captured by consumer-grade cameras. We will
further discuss the visual implications of these shortcomings and required
computational resources for each algorithm in Section 4.4.

4.2.1. Alpha-add and overlay Layer Representations

For handling layers, our blending formulation in (4.1) corresponds to the
alpha add mode present in Adobe After Effects. The normal blending option in
Photoshop is slightly different than ours, which is defined for two layers as
follows:

uo =
α̃aua + α̃bub (1− α̃a)

α̃a + α̃b(1− α̃a)
, (4.10)
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α̃o = α̃a + α̃b (1− α̃a) , (4.11)

where uo and α̃o define the overlaid result with Photoshop-adjusted alpha
value, ua and α̃a define the top and ub and α̃b the bottom layer. We refer to
the layers following this representation as overlay layers with alpha values
denoted by α̃, in opposition to the representation used in our formulation, to
which we refer as alpha-add layers with alpha values α. Unlike the alpha-add
representation where the ordering of the layers is irrelevant, overlay layers
depend on a pre-defined layer order.

Assuming that the layers form an opaque image when overlaid, given the
layer order from 1 to N, Nth layer being at the top, one can convert alpha-add
layers to overlay layers:

α̃n =

{
αn

∑n
i=1 αi

if ∑n
i=1 αi > 0

0 if ∑n
i=1 αi = 0

, n ∈ {1 . . . N}. (4.12)

Since some regions are completely occluded by the layers on top, the alpha
values assigned to them are arbitrary, although we defined α̃n = 0 when
∑n

i=1 αi = 0. If the artist intends to remove some of the layers during editing
for compositing applications as we demonstrate in Section 4.5, those layers
should be placed at the bottom before the conversion.

Similarly, the overlay layers can be converted to alpha-add layers using the
following formulation:

αn = α̃n

(
1−

N

∑
i=n+1

αi

)
, n ∈ {1 . . . N}. (4.13)

Note that the layer colors ui are not affected by these conversions.

4.3. Color Model Estimation

In Section 4.1, we defined the color model as the set of layer color distributions
Ni that represents the color characteristics of layers, which we then used as a
fundamental component of our soft color segmentation formulation. In this
section, we discuss details of our automatic color model extraction process,
which we treated as a black box until now.

One priority we have in the estimation of the color model is determining the
number of prominent colors N automatically. As our layers are meant to be
used by artists in image manipulation applications, it is important to keep N
at a manageable number. At the same time, to enable meaningful edits, the
color model should be able to represent the majority—if not all—pixels of
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4.3. Color Model Estimation

Figure 4.7.: Color model estimation is done by placing seed pixels (marked green on the
top row) one by one and estimating a normal distribution (visualized as the hexagons) from
the local neighborhood of each of the seeds. To select the next seed pixel, we make use of the
representation scores (bottom row, brighter means better-represented). The pixels that are
already marked as well-represented are highlighted with blue on the top row. The hexagonal
visualization shows the color variation along the three principal axes of the covariance
matrices of the estimated 3D color distributions in their diagonals.
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the input image. In order to strike a balance between color homogeneity and
the number of layers N, we would like to avoid including colors which can
already be well-represented as a mixture of other main colors.

Figure 4.7 illustrates our color model estimation process. In order to de-
termine how well a color model represents the input image, we define a
per-pixel representation score rp, which is the color unmixing energy obtained
by minimization using the current (possibly incomplete) color model. The
color unmixing energy can be used to assess the representativeness of an
intermediate color model, since, if the model fails to fully represent a pixel
color in the input image, the color unmixing energy will be high due to the
D(ui) term. By using the color unmixing energy (3.3) instead of only D(ui)
terms, we make sure that the colors that can already be represented as a
mixture of several existing colors are not added to the color model. This
increases the compactness of the estimated color model while preserving the
color homogeneity of the to-be-estimated layers.

Our first goal when estimating the color model is to determine a set of seed
pixels with distinct and representative colors. For estimating the color model,
we rely on a greedy iterative scheme, where we keep selecting additional
seed pixels until we determine that the current color model is sufficiently
representative of the whole image. To select the next seed pixel, we rely on a
voting scheme. To that end, we first divide the RGB color space into 10× 10×
10 bins. Every pixel votes for its own bin, and each vote is weighted by how
well represented the pixel already is such that the most underrepresented
pixels get the highest voting right. We finally select the seed pixel from the
bin with the most votes. If no bin has a significant number of votes, the
algorithm terminates.

Mathematically, the vote of each pixel is computed as:

vp = e−‖∇cp‖
(

1− e−rp
)

, (4.14)

where ∇cp represent the image gradient, which is often a good indicator of
image regions with mixed colors. Since we would rather like to select seed
pixels with pure colors, the above expression penalizes the votes coming from
high-gradient image regions.

After selecting which color bin to add to the color model, we choose the next
seed pixel as follows:

si = arg max
p∈bin

S pe−‖∇cp‖ (4.15)

where S p is the number of pixels in the same bin as pixel p in its 20× 20
neighborhood. We then place a guided filter kernel around p to use as weights
in estimating a normal distribution from the neighborhood of the seed.
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We use a representation threshold to determine which pixels are sufficiently
represented and remove them from the voting pool:

Remove p if rp < τ2. (4.16)

The representation threshold τ roughly indicates the number of standard
deviations the color of a pixel can be away from the mean of a layer distribu-
tion to be considered as well-represented. Smaller values of τ would produce
larger color models that may be cumbersome for users manipulating images,
but the resulting layers would be more homogeneous in terms of their color
content. On the contrary, a larger τ would result in compact color models, but
possibly cause the layers to be less homogeneous. We show in Section 4.4.1
that although our algorithm requires τ as a parameter, fixing τ instead of the
number of layers N generalizes well over different types of images. Through
experimentation, we found τ = 5 to be a good compromise between color
model size and layer homogeneity and use this value to produce all our
results.

As stated earlier, the color model is computed as a pre-processing step to the
soft color segmentation algorithm detailed in Section 4.1. A computational
challenge here is estimating the representation scores efficiently. Instead of
running the computationally demanding nonlinear optimization scheme of
color unmixing every time we add a new seed pixel to the color model, we
approximate the color unmixing cost using the projected color unmixing that is
discussed next.

4.3.1. Approximating the Representation Score

From an implementation point of view, the main challenge with the aforemen-
tioned color model estimation scheme is the expensive cost of recomputing
the color unmixing energy every time we add a new entry to the color model.
The key observation that enables us to circumvent this challenge is that in
order to estimate the representation scores rp, we only need to know the color
unmixing energy F , but do not necessarily need to obtain the correct alpha
and color values as a result of the minimization process.

We reformulate the representation score computation as:

r̂p = min({Di(cp), ∀i} ∪ {F̂i,j(cp), ∀i, ∀j 6= i}), (4.17)

where F̂i,j(cp) represents an approximation of the minimized color unmixing
energy using the ith and jth color distributions as input. The major simplifying
assumption we make here is that the mixed colors mainly constitute major
contributions from at most two distributions in the model. The first term in
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Figure 4.8.: An illustration of projected color unmixing. See text for discussion.

(4.17) corresponds to colors that fit well with a single color, while the second
represents the case for two-color mixtures. We approximate the two-color
minimum color unmixing energy using the method we call projected color
unmixing.

Projected color unmixing

The color line assumption [Ruzon and Tomasi, 2000], i.e. the unmixed layer
colors and the observed pixel color should form a line in the RGB space,
is a useful tool especially for sampling-based natural matting methods in
the literature, such as [Gastal and Oliveira, 2010]. While this assumption
can be used for the 2-layer case, this simplification does not generalize to
N > 2. In this section, we utilize the color line assumption and provide an
approximation to the color unmixing energy for the N = 2 case, which we
illustrate in Figure 4.8.

Color unmixing samples colors from 3D normal distributions in color space.
In order to make use of the color line assumption, we restrict the possible
space of samples taken from each distribution to a 2D plane. For a pair
of normal distributions N1(µ1, Σ1) and N2(µ2, Σ2), the plane of possible
unmixed colors for the first layer is then defined by the normal vector n =
µ1 − µ2 and the point µ1.

We determine the approximations û{1,2} to the unmixed colors u{1,2} as pro-
jections of the observed color c to the two planes:

û{1,2} = c−
(c− µ{1,2}) · n

n · n n. (4.18)
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The alpha values are then determined such that they satisfy the color con-
straint:

α̂1 =
‖c− u2‖
‖u1 − u2‖

, α̂2 = 1− α̂1. (4.19)

If c does not lie between the two planes, we conclude that the pixel p can not
be represented as a mixture of samples drawn from the two color distribu-
tions.

In order to compute the cost of this color mixture, we project the normal
distributions onto the corresponding planes as well. We then apply the color
unmixing energy formulation using these 2D distributions:

F̂ = α̂1D
proj
1 (û1) + α̂2D

proj
2 (û2), (4.20)

where we refer to F̂ as projected color unmixing (PCU) energy.

If the two largest eigenvalues of the normal distribution are close to lying on
the plane we defined above, the estimated layer color is actually very close to
the one found by color unmixing, as illustrated by distribution 1 in Figure 4.8.
Otherwise, the approximation error is larger, as illustrated by distribution 2.

The approximation to the alpha values shown in (4.19) is actually the same as
the alpha estimation equation proposed by Chuang et al. [2001] and utilized
by many sampling-based natural matting approaches:

α̂B1 =
(c− u2) · (u1 − u2)

‖u1 − u2‖2 . (4.21)

The cost of using a pair of samples is typically defined in relation to chromatic
distortion [Gastal and Oliveira, 2010]

C = ‖c− α1u1 − α2u2‖, (4.22)

which is basically the deviation from the color constraint. While both chro-
matic distortion and PCU measure the quality of the unmixing using the two
samples / distributions, a significant difference between them is that PCU
measures the cost when the color constraint is satisfied using the statistical
models for the layers.

Experimentally, we found that the projected color unmixing energy gives us
an approximation to the 2-layer color unmixing energy by an error rate of
15% on average, while running approximately 3000 times faster on a standard
PC. By estimating the unmixing costs efficiently, our overall gain in total
color model computation time is a 5-time improvement compared to using
the color unmixing optimization procedure. On average, the time required to
compute the color model for a 1 MP image is 9 seconds.
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A step-by-step example of our color model computation procedure is pre-
sented in Figure 4.7. To summarize our color model computation, we add
new layer color distributions to our color model by first computing the per-
pixel representation scores efficiently using projected color unmixing ((4.17)).
We then group the image pixels into color space bins and execute a voting
scheme where we give higher weights to pixels with lower representation
scores. Within the bin with the highest votes ((4.14)), we select the seed
pixel from an image region where the gradient magnitude is low ((4.15)). We
compute the parameters of a normal distribution from the neighborhood of
the seed pixel and add this distribution to the color model. We remove the
well-represented pixels ((4.16)) and repeat the procedure until no bins have
enough votes.

4.3.2. Color Model Estimation Methods in Literature

There are several methods to compute a color model given an image. We
will discuss the common clustering methods such as K-means and Gaussian
mixture models (GMM) as well as methods integrated with their soft color
segmentation or color editing counterparts by Tai et al. [2007], Chang et
al. [2015] and Tan et al. [2016].

Our method generalizes well over different types of images with a fixed
parameter τ = 5 as opposed to the rest of the algorithms, all of which need
the number of layers N as the input parameter that change dramatically
from image to image. In contrast, KNN [Chen et al., 2013a], ML [Singaraju
and Vidal, 2011] and our green-screen keying approach in Chapter 3 rely on
user input in forms of scribbles or seed pixels rather than a color model.
RGBSG [Tan et al., 2016] requires the ordering of the layers as input in
addition to N. It should be noted that there are generalized methods such
as G-means [Hamerly and Elkan, 2003] or PG-means [Feng and Hamerly,
2006] for automatically estimating the number of clusters in arbitrary data
sets. However, they do not take into account the specific characteristics of
estimating the number of color layers, such as mixed-color or high-gradient
regions.

The color model, referred to as the palette by Chang et al. [2015], is deter-
mined by a modified version of the K-means for the palette-based recoloring
application [Chang et al., 2015]. They simplify the problem by using color
bins rather than all of the pixel colors in the image and disregarding dark
color entries.

Clustering methods such as K-means or expectation maximization for GMM,
as well as the palette estimation by Chang et al [2015], tend to produce layer
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Figure 4.9.: The color model and corresponding layers computed by the proposed method
(bottom) and by Tan et al. [2016]. The layers on the right have been converted to alpha-
add representation from overlay representation (Section 4.2.1) for a more meaningful
comparison. The number of layers is different for the two algorithms because we are using
the original result of Tan et al. which has 5 layers, and our automatic color model estimation
method determined 6 dominant colors in the image. See text for discussion.

color distributions with means far away from the edges of the RGB cube. This
often results in under-representation of very bright or highly-saturated colors
in the color model.

On the other hand, the color model estimation of AO, as well as GMM,
typically results in normal distributions with high covariances, which has
an adverse effect on the color homogeneity of the resulting layers. This is
due to the lower energy achieved with large covariances in the expectation
maximization for GMM. In the case of AO, they estimate the parameters using
the layer colors at a particular iteration of their algorithm. This causes their
algorithm to begin with large covariances as in the first iteration they assume
opaque pixels after an initial clustering, and this inclusion of unmixed colors
in the model estimation causes large color variation in each layer. Large
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covariances promote non-uniform layers and as a result, further iterations do
not tend to make color distributions more compact.

RGBSG begin their model estimation by assuming that the input image is
formed by a limited set of colors. This assumption does not generalize well
to natural images as they may include much more complex color schemes
and mixtures. Their alpha estimation method requires the model colors
to envelop the convex hull formed by the pixel colors in the image, and
hence they identify the model colors by simplifying the wrapping of the hull.
This results in selection of colors that are either on the edge or outside the
convex hull. Hence, the colors picked by them do not necessarily exist in the
image, and a dominant color that is in the middle of the RGB cube can not
be selected as a model color. The effect of this can be observed in Figure 4.9,
where orange were not included by their color model and instead yellow,
which does not appear anywhere in the image, is selected. The orange pixels
are then represented by the mixture of red and yellow. Tan et al. [2016] points
out that this behaviour aloows the algorithm to discover hidden colors in the
image. However, it is suboptimal for image editing in various scenarios
as when the edited color does not exist in the image, the effects of the edit
becomes hard to predict. In addition, the simplified wrapping of the hull does
not necessarily stay inside the valid color values. They map these imaginary
colors onto the acceptable range and this may result in their alpha estimation
not satisfying the color constraint.

Our method, in contrast to some of the competing approaches, exclusively
selects colors that exist in the image. By constructing the model through
selected seed pixels instead of clustering, we can include highly-saturated or
bright colors.

While each approach has advantages and disadvantages, an important thing
that should be noted is that the integrated approaches in RGBSG, AO and
ours have characteristics coupled with their corresponding layer estimation
methods. RGBSG requires colors that envelop the pixels, and AO requires an
iterative approach to refine the layers together with the model. Our approach
constructs the color model using the unmixing energy, which results in a
model that is able to represent the pixel colors with low unmixing energy,
which in turn makes our estimated layers have smaller color variation. We
evaluate our automatic technique in Section 4.4.1.

4.4. Experimental Evaluation

Evaluating soft color segmentation methods is challenging, since how the
optimal set of layers resulting from decomposing a particular input image
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Table 4.1.: Quantitative test results for ML [Singaraju and Vidal, 2011], SM [Levin
et al., 2008b], KNN [Chen et al., 2013a], AO [Tai et al., 2007], CU (Chapter 3) and the
proposed algorithm. Italic font indicates values below quantization limit.

SM ML KNN AO CU Ours
α /∈ [0, 1] 34% 30% 0.0001% 0% 0% 0%
Rec. Error 0.0039 0.0138 0.0183 0.00002 0.0003 0.0005

Color Var. 0.050 0.044 0.006 0.051 0.001 0.005
Grad. Corr. 0.78 0.71 0.84 0.55 0.56 0.89

should exactly look like is not clear. In fact, even the existence of such a
ground-truth soft color segmentation is questionable at best. Accordingly, in
this section, we present two types of evaluation. As qualitative evaluation,
we present layers that are computed by our method in comparison with
previous methods in Figures 4.12–4.14 for visual inspection by the reader.
These results provide insights on the overall quality level of each algorithm
and serve as a visual reference on the characteristic artifacts each method
produces. For quantitative evaluation, we devise a set of blind metrics for
assessing how well each method satisfies the constraints and requirements
that we discussed in Section 4.1. These metrics are:

• Out-of-bounds alpha values: Check if the box constraint ((4.3)) is
satisfied for alpha values. The metric returns the percentage of alpha
values outside the permissible range.

• Reconstruction error: Check if the color constraint ((4.1)) is satisfied.
The metric computes the average squared distance between an input
image and the alpha-weighted sum of all its layers.

• Color variance: Assess the color homogeneity of layers. The metric
returns the sum of individual variances of RGB channels averaged
over all layers of an input image.

• Gradient correlation: Assess whether the texture content of the in-
dividual layers agrees with that of the input image. Inconsistencies
such as abrupt edges in a layer, which are not visibly identifiable in
the original input image will result in a low score. The metric returns
the correlation coefficient between the alpha channel gradients of the
layers and the color gradients of the original image. We define the
alpha channel gradient as the L2 norm of the vector that comprises the
gradients of alpha values of every layer. Similarly, we compute the
L2 norm of the gradient of each color channel as the color gradient.
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Figure 4.10.: Computational resources needed for soft color segmentation with respect
to the image size (left) and layer count (right). An image with 7 layers for and example
images with corresponding layer counts were selected to see the trend in each algorithm.
Note that the data axes are in logarithmic scale.

Note that the above metrics only evaluate constraints and requirements that
are not satisfied by at least one method. For example, we excluded the box
constraint for color in (4.3), since the particular implementations of all the
methods we consider in our evaluation produce color values within the
permissible range. We executed the above metrics on a test set of 100 diverse
images, and report the average numbers in Table 4.1.

We also analyzed the run-time and memory requirements of each method
both as a function of the color model size and image resolution in Figure 4.10.
For the former test, we selected 8 images at 1MP resolution with varying color
model sizes from 4 to 11. In the latter test, where we investigate the scalability
of each method in terms of image size, we chose an image with 7 layers1,
which we resized from 5MP down to 40kP. It should be pointed out that our
parallelized C++ application is compared to the MATLAB implementations
of the competing methods. KNN, SM and ML solve large linear systems
which can not be efficiently parallelized. However, these graphs still give us
an idea of the scalability of each method. To demonstrate the scalability of
our method, we show the soft color segments of a 100MP image in Figure 4.11

In our evaluation, we used publicly-available implementations of SM and
KNN. We will compare against using only color unmixing (CU) as well.
We implemented ML using Levin et al.’s [2008a] publicly-available matting
Laplacian and foreground layer estimation implementation. We utilized the
latter also for computing the layer colors of SM. As AO’s implementation was

1The average size of the color model was 6.88 for the 100 images on which we do the evaluation.
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Figure 4.11.: Our algorithm is able to process a 100MP image (a) to get corresponding
soft layers (b) thanks to our per-pixel formulation and matte regularization by guided
filtering. (c) and (d) show insets from the input layer and two of the layers at 10x and 100x
magnification. This image was processed in 4 hours using up to 25 GB of memory. Note
that KNN and AO can only process a 2.5MP image within the same time budget, and SM
requires more than 25 GB of memory for a 5MP image.

75



Unmixing-Based Soft Color Segmentation for Image Manipulation

Figure 4.12.: Comparison of the soft color segments produced by various algorithms
including ours. See text for discussion.

not available2, we implemented the method ourselves in MATLAB, where we
utilized the UGM toolbox for the loopy belief propagation [Schmidt, 2007].
Our own results for soft color segmentation and color unmixing (CU) were
generated using our research prototype written in C++ with parallelization
using OpenMP.

SM and AO require the number of layers N a priori as input, whereas KNN
obtain N seed pixels through user interaction, CU requires N scribbles, and
ML similarly requires N user-specified regions. In order to enable a mean-
ingful comparison among all competing methods, we utilized the number

2Upon correspondence with the first author, we learned that the original code is no longer
available.
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Figure 4.13.: Comparison of the soft color segments produced by various algorithms
including ours. See text for discussion.

N, as well as the N seed points determined by our color model (Section 4.3).
As the input to ML, we used N image regions, each comprising pixels with
similar colors to a seed pixel. In order to avoid biasing the comparison by
artistic talent, we excluded the local color models from CU. It should also
be noted that SM, by design, produces spatially connected soft layers rather
than emphasizing color homogeneity. Nevertheless, for completeness, we
include SM in our evaluation.

A representative qualitative comparison is presented in Figures 4.12–4.14,
where we show the layers produced by all competing methods. The figures
clearly illustrates the shortcomings of propagation based methods SM and
ML. For example in Figure 4.12, in ML’s case, the sky and its reflection on the
lake end up in two separate layers, despite having similar colors. The quanti-
tative results for both methods, in agreement with our theoretical analysis
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Figure 4.14.: Comparison of the soft color segments produced by various algorithms
including ours. See text for discussion.
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Figure 4.15.: The soft color segments produced by the proposed algorithm (bottom) and
by the method by Tan et al. [2016]. The layers by Tan et al. [2016] have been converted to
alpha-add representation from overlay representation (Section 4.2.1) for a more meaningful
comparison. See text for discussion.

in Section 4.2, indicate that they, in fact, suffer from alpha values outside the
permissible range. Their results on the remaining metrics reveal that they are
generally worse than others for the task of soft color segmentation (Table 4.1).

On the other hand, both Figure 4.12 and Table 4.1 confirm our claims from
Sections 4.2 and 4.3 on AO’s potential color homogeneity issues, and the
consequences of solving for alpha and color values separately. The figure
clearly shows spurious hard edges on AO’s layers, and the method performs
badly on both color variance and gradient correlation metrics.

While KNN does not share AO’s weaknesses, it instead tends to fail to satisfy
the color constraint for reasons discussed in Section 4.2. Another significant
drawback of KNN is its prohibitively long run-time, which prevents the
method to be used on high-resolution images on current PC hardware.

The layers computed by CU in Figure 4.12 clearly show the visual effect
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of the absence of spatial coherency, which manifests itself as spurious hard
edges throughout the layers. This problem is also evident from the gradient
correlation metric outcomes in Table 4.1.

We could not include RGBSG [Tan et al., 2016] in these comparisons because it
requires the user to define the ordering of the layers. The quality of its layers
depend on this ordering and hence we could not use a random ordering to
determine its true performance. This ordering is rather hard to define prior
to soft color segmentation even by a user and the need for it is a significant
shortcoming. Instead, we compare our layers against RGBSG using the layers
provided by Tan et al. [2016] in their paper in Figure 4.15.

RGBSG provides opacity layers with smooth transitions as we do, as opposed
to other algorithms we analyze in this section. Also, their layer colors are
defined to be solid, which makes their color variation score 0. However,
their formulation and model estimation requires the model colors to envelop
the pixel colors of the original image from the outside in RGB space, which
makes the color content of their layers different from the dominant colors in
the image. This behavior, when coupled with the solid color-layers, results
in reduced sparsity in their layers. Figure 4.15 demonstrates this particular
shortcoming. While the girl’s hoodie has a particular shade of the blue, it
was not included in the color model of RGBSG. As a result, that region also
has strong green and white components in addition to blue. Also, the purple
color does not exist in the original image but is included in the model of
RGBSG and computed as an additional layer. By containing a subset of actual
image colors, our automatically-computed layers provide an intermediate
image representation that is more intuitive to use.

To summarize, all current soft color segmentation methods suffer from one
or more significant drawback(s). Our method, on the other hand, success-
fully satisfies the alpha, box and color constraints, and produces layers with
homogeneous colors. The transitions in between layers of our method are
highly correlated with the texture of the original image. Importantly, due to
its highly-parallelizable per-pixel formulation, our method is more memory
efficient and runs more than 20× faster than KNN and RGBSG, which are the
closest competition in terms of the quality of results. The proposed algorithm
can process a 100MP image in 4 hours using up to 25 GB of memory. Note
that KNN and AO can only process a 2.5MP image within the same time
budget, and SM requires more than 25 GB of memory for a 5MP image. Also,
note that our modifications to the color unmixing formulation cause only
a modest performance hit, while significantly improving the quality of the
layers.
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4.4.1. Color Model Estimation

We compare our color model estimation method (Section 4.3) with other meth-
ods, such as the specialized color model estimation schemes from AO, RGBSG
and palette-based recoloring [Chang et al., 2015], as well as general-purpose
clustering methods K-means and expectation maximization for Gaussian
mixture models (GMM).

Figure 4.16 shows exemplary results for discussion. First of all, Figure 4.16
clearly demonstrates that the number of main colors N in an image (and
thus the desired cardinality of the color model) is highly content dependent.
However, all current methods require N to be specified a priori. Figure 4.16
shows that any fixed number will be an overkill for certain images, whereas
being too restrictive for others. Our method is highly advantageous in this
regard, as it determines N automatically by analyzing the image content
using a fixed parameter τ = 5. Note that to enable a meaningful comparison,
we set N for the competing methods to the value determined by our method.

One characteristic of clustering-based methods is the lack of highly saturated
or bright colors in the estimated model. This is because as they form clusters,
the centers tend to be far away from the edges of the RGB cube to get a
lower clustering energy. By sampling colors directly from the image using
our voting-based scheme, we are able to get the colors as they appear in the
image. This behavior is especially apparent in the last image in Figure 4.16,
where K-means and palette-based recoloring fails to capture the vivid colors
in the image.

RGBSG color model estimation, on the other hand, selects colors that lie
outside the convex hull formed by the pixel colors in the image. This results
in many colors appearing in the color model that do not exist anywhere in
the image, such as the bright green entries in the second and third examples
in Figure 4.16.

Another advantage of our color model estimation is its tendency to produce
homogeneous color distributions, which directly influences the color ho-
mogeneity of the resulting layers computed by the soft color segmentation
method. The hexagonal visualizations of each method’s estimated color dis-
tributions in Figure 4.16 reveal that AO and GMM produce noticeably more
color variation in each color model entry compared to our method.

Our method can also capture distinct colors confined in small image regions,
such as the skin color in the middle image in Figure 4.16, or the green of
the plant in the fourth image in the figure, which are missed by all other
methods except palette-based recoloring. Since such regions usually form
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Figure 4.16.: Comparison of the color models estimated by our method, alternating
optimization [Tai et al., 2007], expectation maximization using Gaussian mixture models
(GMM), RGB-hull based method used in RGBSG [Tan et al., 2016], palette estimation
used in palette-based recoloring [Chang et al., 2015], and K-means clustering. The green
dots on the images denote seed points determined by the proposed algorithm. The hexagonal
visualization shows the color variation along the three principal axes of the covariance
matrices of the estimated 3D color distributions in their diagonals. The square visualization
shows a single solid color, which is used for methods that only estimate colors rather than
distributions. See text for discussion.
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small clusters in color space, K-means and GMM tend to merge them into
larger clusters.

While the competing methods have particular disadvantages, we refer the
reader to Section 4.3.2 for the discussion on how and why the specialized
model estimation methods in AO and RGBSG, as well as ours, fit well with
their corresponding layer estimation counterparts.

4.5. Applications

A key advantage of our framework is that it allows numerous, seemingly
unrelated image manipulation applications to be executed trivially, once an
input image is decomposed into a set of layers. For example, color editing
can simply be performed by translating the colors of one or more layers,
green-screen keying amounts to removing the layer(s) corresponding to the
background, texture overlay can be achieved by introducing new texture
layers obtained from other images, etc. In this section, we show high-quality
results for different image manipulation applications that were produced by
first letting our method do the heavy lifting, and then applying a small set of
basic per-layer operations.

Our method naturally integrates into the layer-based workflow adopted by
the majority of the current image manipulation packages. In Figure 4.17
(bottom) we list some basic image manipulation operations that are imple-
mented in image manipulation software packages. In practice, users can
easily import the layers computed automatically using our method into their
preferred software package, and perform these edits through familiar tools
and interfaces. This way we prevent any unnecessary learning effort, as well
as allowing to take full advantage of the powerful layer-based editing tools
available.

We produced our application results by first exporting the layers computed
automatically by our method to Adobe Photoshop, and then performing a
set of operations on individual layers.

We present our results in Figures 4.17 and 4.18, where input images and
the corresponding automatically estimated color models are shown on the
top, and edited images are shown at the bottom, along with the list of im-
age manipulation operations applied to obtain the presented results. These
image manipulation operations are denoted by small icons underneath the
edited images, and the corresponding legend is presented at the bottom of
Figure 4.17. For example, Figure 4.17 (3) is obtained by changing brightness,
colors and saturation on certain layers, whereas in Figure 4.17 (8) we only
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䰀愀礀攀爀 搀攀氀攀琀椀漀渀
䌀漀洀瀀漀猀椀琀椀渀最

䴀愀猀欀椀渀最 ⼀ 爀漀琀漀 琀漀漀氀
倀愀琀琀攀爀渀 漀瘀攀爀氀愀礀

䌀甀爀瘀攀猀 琀漀漀氀

䰀攀瘀攀氀猀 琀漀漀氀
匀愀琀甀爀愀琀椀漀渀 挀栀愀渀最攀
䌀漀氀漀爀 最爀愀搀椀渀最 ⼀ 挀栀愀渀最攀

䌀漀渀琀爀愀猀琀 挀栀愀渀最攀
䈀爀椀最栀琀渀攀猀猀 挀栀愀渀最攀

Figure 4.17.: Example results that were generated using the layers provided by the
proposed algorithm. Each set shows the input image (top), the color model, the edited image
and the set of operations applied to individual layers. The set of operations is defined on the
bottom. See text for discussion.

applied color changes to a subset of the layers. For brevity, in the remainder
of this section we will refer to the specific results presented in Figures 4.17
and 4.18 solely by their designated indices.

In the following paragraphs, we discuss numerous examples of image manip-
ulation applications and highlight our corresponding results. These applica-
tions can be categorized into layer adjustments, where we modify properties
of existing layers, and compositing, where we add new layers to an image or
remove existing ones. Note that some of our results contain specific manip-
ulations that can be classified under more than one application, which can
easily be performed under a single framework using our method.

84



4.5. Applications

Figure 4.18.: 4.17 continued.

4.5.1. Layer Adjustments

The users can easily enhance or even completely change image colors as well
as adjusting brightness and exposure on a per-layer basis. Note that while
performing such edits globally throughout the entire image is trivial, making
local adjustments is often challenging and prone to producing visual artifacts.

Color enhancement/change: A number of effects can be achieved by sim-
ply using the hue/saturation tools available in most image manipulation
software, as well as the more sophisticated color adjustment tools (such as

85



Unmixing-Based Soft Color Segmentation for Image Manipulation

the vibrance control in Photoshop) on selected layers of an input image. We
showcase several examples including changing colors of clothing (1, 4, 6,
8, 13, 18), fauna (3), illumination (2, 7), sky (16, 17), fire (17) and metallic
surfaces (15).

Brightness/exposure change: The brightness and exposure of specific layers
can similarly be modified to make slight adjustments in the overall image
appearance. Such subtle edits are performed in most of our results presented
in Figures 4.17 and 4.18. Additionally, in (16) and Figure 1(c), we demonstrate
a local enhancement of luminance contrast of the clouds, which results in
certain details becoming visible and giving the impression of more volume
compared to the input images. A particularly interesting image manipulation
is showcased in (19), where we increase the intensity of shadows to facilitate
establishing the skater as the center of attention in the composition.

Skin tone correction: Adjusting skin tones is one of the most common photo
editing operations applied in practice. Since humans are usually the most
salient scene elements and our visual system is highly tuned for detecting any
imperfections especially on faces, even the slightest visual artifacts caused
by re-adjusting skin colors can be disturbing for the viewer. Our results (1, 4,
6, 18) show examples of modified skin tones, which we achieved by making
the mid-tones richer in the corresponding layer using the curve tool. The
highlights on the faces can also be edited to be weaker (1, 4).

4.5.2. Compositing

Our layers also serve as a useful intermediate image representation for
general-purpose compositing applications.

Green-screen keying: Images (11, 12, 13, 14) show our green-screen keying
results obtained automatically by simply removing the layers corresponding
to the green screen. Note that any other background object on the green-
screen (such as the markers in (14)) can easily be removed using a standard
garbage matte.

Texture overlay: Our method also allows additional layers to be overlaid
onto existing ones. Image (10) shows such an example where we extract
the drawing from the blackboard on the source image and overlay it on a
new image only by applying a perspective transform to the corresponding
layers. Note that, due to their accurate opacity channels, the transferred
layers properly mix with the texture of the concrete ground and shadows.
In (15) we make a file cabinet appear more rugged by overlaying a texture
pattern.
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Layer replacement: Our method can also be used for removing existing
layers and adding new ones, even if the content is not captured in a green-
screen setting. (9) show an example where we extract the object from the
background with the help of roto masks, and use it to create a web page.
Note that the details such as the shadow of the motorcycle are retained in the
composited result with proper opacity. Finally, in (18), we completely replace
the original background with an external image while properly retaining the
reflection on the window.

Our results demonstrate that state-of-the-art quality can be achieved using
our soft color segmentation as an intermediate image representation, which
in turn trivializes numerous image manipulation applications. This suggests
that soft color segmentation is, in fact, a fundamental technical problem in
image manipulation. By isolating this problem and solving it effectively
and efficiently, our method serves as a unified framework for high-quality
image manipulation, which gives users significant flexibility for realizing
their artistic vision.

4.6. Comparisons at the Application Level

We demonstrated the use of our soft color segments in image editing in
Section 4.5. Theoretically, any soft color segmentation method could produce
layers that can be used for the same applications. We analyzed in Section 4.4
the differences between the current state-of-the-art in soft color segmentation
and the proposed method. In this section, we will demonstrate how these
differences affect image editing results. We will also present the results
of professional artists using commercially available tools for some of the
demonstrated applications.

Figures 4.19 and 4.20 show two images being edited by using our layers,
layers by AO, KNN and RGBSG, as well as by a professional artist using
Adobe Photoshop and using the palette-based recoloring application by
Chang et al. [2015]. The example in Figure 4.19 shows a simpler case in
terms of the structure of the image. It can be observed that the artist can
achieve a similar result to ours using masks generated by the artist, although
drawing the masks can be time consuming, especially around fine structures
such as the rear tire of the bicycle. The palette-based color editing results in
unintended color changes for some edits, especially the effect of changing the
color of the ground at the last step where a large region in the sea also gets
affected. Using the layers by AO and KNN also gives similar results, although
some smoothness issues can be observed. RGBSG layers did not allow the
intended edits to be applied due to their color content in this example but we
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included it in the figure for completeness. The blue layer of RGBSG covers
the sky, sea and the ground and hence the targeted edits could not have been
applied.

The example in Figure 4.20 is more challenging for the competing approaches.
The simple masks that was useful in Figure 4.19 results in color artifacts when
the artist attempts to change the pink of the coat to yellow. The soft color
transitions and fine structures are the main source of the problem since the
layer masks do not include unmixing of the colors and the color changes result
in suboptimal color transitions with the neighboring regions. The feedback
we got from the artist was that very precise masks should be drawn at the
pixel level manually and targeted color edits should be done to make the
transitions look more natural, which is a very time-consuming and error-
prone task. The fine structures and transitions are dealt with better by the
palette-based recoloring. However, in this case, we see significant artifacts
around bright regions. Using the layers by AO also creates significant visual
artifacts as the pink layer could not cover the full extent of the color. The
layers by KNN do not give the original image and this results in a degraded
version of the image even without editing. The pink layer covers areas in
around the hair and in the background in RGBSG layers, which results in
some artifacts in the edited result. It can also be observed that the transition
from pink to blue of RGBSG layers is suboptimal and some pinkish hue can
be observed in this region after the color change.

We present color editing results using our layers in images used by Tan et
al. [2016] (RGBSG) and Chang et al. [2015] (PBR) in Figure 4.21. We observed
some matte smoothness issues in the results by RGBSG as apparent in the
top two images. The color change from blue to pink in the bottom example
results in artifacts around the soft transition from the chair to the background.
The luminance constancy constraint of PBR, which states that the luminance
of a particular palette color should always be lower than other palette colors
that are originally brighter in the non-edited palette, results in overexposed
regions when one attemps to increase the luminance of the sky in the top
example. Also, the orange hue in the boat example still exists in the ground
after the color change from orange to purple, alongside with other artifacts
around the boat itself. The color change in the bottom example erroneously
affects the color of the chair completely when PBR is used.

In summary, while given enough time our results could potentially be repro-
duced by a skilled artist utilizing various specialized tools for each task, our
method in general significantly reduces the manual labor required for achiev-
ing production-quality results, and provides artists a unified framework for
performing various image manipulation tasks conveniently.
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Figure 4.21.: Color editing results using our layers (a), layers by Tan et al. [2016] (b)
and using the recoloring application by Chang et al. [2015] (c) on images used by Tan et
al. [2016] and Chang et al. [2015] in their papers. See text for discussion.

4.7. Limitations

In some cases, the automatically estimated color model comprises color
distributions that are subjectively similar, such as the three separate white
layers and the separate dark brown/black layers in Figure 4.22(c). While this
level of granularity might be useful, a more concise color model would be
more convenient for certain edits. Fortunately, combining multiple layers
into one is trivial in our framework (Figure 4.22(b)). It is worth noting that
the transitions between layers with perceptually similar color distributions
are still smooth and have accurate alpha values. Therefore, they can still be
edited separately if the user intends to do so.
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Figure 4.22.: In some cases, the proposed color model estimation algorithm may give
more layers than the user intends to make use of, as seen in the bottom row (c). However,
these layers can easily be combined to be edited together, an example of which is shown in
the top row (b) with the original image and the color model (a).

We showed that our soft color segmentation method can also be used for
green-screen keying without the two-step interaction process. That said, our
sparse color unmixing energy formulation (Section 4.1), which is designed
for general-purpose soft color segmentation, is not as effective in dealing
with color spill (indirect illumination from the green-screen) as our targeted
pipeline in Chapter 3.

The color model estimation method we propose selects seed pixels from
the image, and hence comprises only colors that exist in the image. This
strategy is effective for including colors with high brightness or saturation
when compared to the clustering-based methods as discussed in Section 4.4.1.
However, one limitation is that it can not identify colors that only appear as a
mixture in the image, such as the original color of a colored glass or smoke
that is not dense. For estimating such a color which does not appear opaque
anywhere in the image, a different specialized approach is needed that would
estimate the partial contributions from an existing incomplete color model in
order to isolate the missing color.

Finally, as our soft color segmentation method does not utilize high-level
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Figure 4.23.: Although our automatic method is not able to deal with color spill (c) as
well as our targeted keying method in Chapter 3 (b), it is possible to use commercial keying
software such as Keylight to get rid of the spill as a post-processing step (d).
.

information such as semantic segmentation or face detectors, the spatial
extent of our soft segments do not necessarily overlap with semantically
meaningful object boundaries. We will discuss a soft segmentation approach
that targets detecting semantically meaningful soft boundaries in Chapter 6.
It is fairly easy to limit the spatial extent of soft color layers by masking
with semantic regions since our layers naturally integrate into current image
manipulation software.
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Part II.

Affinity-Based Matting

95





C H A P T E R 5
Effective Inter-Pixel Information Flow for
Natural Image Matting

Natural image matting can be seen as a generalization of the green-screen
keying problem we studied in Chapter 3, where the background is not con-
trolled and can contain any objects or image structures. This greatly increases
the complexity of the problem, and a color-focused approach does not suffice
to model the complex soft transitions between the foreground object and its
surroundings. To address this complexity, we will rely on a graph-based ap-
proach where each pixel is modeled as a node on the graph, and the edges in
the graph are inserted to best represent the soft transitions and color mixtures.

The under-constrained nature of this problem is typically alleviated by an
additional input called trimap. Trimaps consist of three regions: fully opaque
(foreground), fully transparent (background) and of unknown opacity. F , B
and U will respectively denote these regions, and K will represent the union
of F and B. Graph-based methods, commonly reffered to as affinity-based
in the literature, operate by propagating opacity information from K into U
using a variety of affinity definitions. The state-of-the-art in affinity-based
matting usually rely on a single affinity definition, which results in limited
generalizability to complex foreground structures. Figure 5.1 demonstrates
the shortcomings of single-affinity approaches in two simple examples. We
define this flow of information in multiple ways so that each pixel in U
receives information effectively from different regions in the image. The
quality increase in the matting results with each additional affinity definition
can be seen in Figure 5.2.
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Input Gnd-truth Trimap

Closed-form KNN - HSV KNN - RGB

Man. Pres. CMF-only Ours

Input Gnd-truth Trimap

Closed-form KNN - HSV KNN - RGB

Man. Pres. CMF-only Ours

Figure 5.1.: We created two duotone 500x500 images and blurred them to get soft
transitions between regions. The numbers show the sum of absolute differences between the
estimated alpha mattes and the ground truth. Closed-form matting [Levin et al., 2008a]
uses local information flow, KNN Matting [Chen et al., 2013a] uses HSV- or RGB-based
similarity measure, and manifold-preserving edit propagation [Chen et al., 2012] uses LLE
weights [Roweis and Saul, 2000]. We observe a performance improvement in large opacity
gradients even when only the color-mixture flow (CMF) is used (Section 5.1.1). Notice
also that both large gradients and holes are recovered with high performance using our final
formulation. See text for further discussion.

We apply the multiple information-flow approach to related problems in
natural matting, matte refinement and layer color estimation, in Section 5.2
and Section 5.3, respectively. We also provide a spectral analysis of different
affinity choices as well as an analysis of state-of-the-art sampling-based
matting techniques later in this chapter.

5.1. Information-Flow Matting

The opacity transitions in a matte occur as a result of the original colors in the
image getting mixed with each other due to transparency or intricate parts
of an object. We make use of this fact by representing each pixel in U as a
mixture of similarly-colored pixels and defining a form of information flow
that we call color-mixture flow (Section 5.1.1). We also add connections from
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Figure 5.2.: For an input image and a trimap (a), we construct our linear system by
first using the color-mixture flow (b), then adding direct channels of information flow
from known to unknown regions (c), and letting information be shared effectively inside
the unknown region (d). We finally introduce local information flow to enforce spatial
smoothness (e). Note that the intermediate results in this figure are solely for illustration.
In practice, we construct a single energy function that accounts for all types of information
flow and solve it once to obtain the end result.

every pixel in U to both F and B to facilitate direct information flow from
known-opacity regions to even the most remote opacity-transition regions
in the image (Section 5.1.2). In order to distribute the information from
the color-mixture and K-to-U flows, we define intra-U flow of information,
where pixels with similar colors inside U share information on their opacity
with each other (Section 5.1.3). Finally, we add local information flow, a
pixel affecting the opacity of its immediate spatial neighbors, which ensures
spatially coherent end results (Section 5.1.4). We formulate the individual
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forms of information flow as energy functions and aggregate them in a global
optimization formulation (Section 5.1.5).

5.1.1. Color-Mixture Information Flow

Due to transparent objects as well as fine structures and sharp edges of
an object that cannot be fully captured due to the finite-resolution of the
imaging sensors, certain pixels of an image inevitably contain a mixture of
corresponding foreground and background colors. By investigating these
color mixtures, we can derive an important clue on how to propagate alpha
values between pixels. The amount of the original foreground color in a
particular mixture determines the opacity of the pixel. Following this fact,
if we represent the color of a pixel as a weighted combination of the colors
of several others, those weights should correspond to the opacity relation
between the pixels.

In order to make use of this relation, for every pixel in U , we find KCM = 20
similar pixels in a feature space by an approximate K nearest neighbors
search in the whole image. We define the feature vector for this search as
[r, g, b, x̃, ỹ]T, where x̃ and ỹ are the image coordinates normalized by image
width and height, and the rest are the RGB values of the pixel. This set of
neighbors, selected as similar-colored pixels that are also close-by, is denoted
by N CM

p .

We then find the weights of the combination wCM
p,q that will determine the

amount of information flow between the pixels p and q ∈ N CM
p . The weight

of each neighbor is defined such that the weighted combination of their colors
yields the color of the original pixel:

arg min
wCM

p,q

∥∥∥∥∥∥cp − ∑
q∈N CM

p

wCM
p,q cq

∥∥∥∥∥∥
2

, (5.1)

where cp represents the 3x1 vector of RGB values. We minimize this energy
using the method by Roweis and Saul [2000]. Note that since we are only
using RGB values, the neighborhood correlation matrix computed during
the minimization has a high chance of being singular as there could easily
be two neighbors with identical colors. So, we condition the neighborhood
correlation matrix by adding 10−3 IKCM×KCM to it before inversion, where
IKCM×KCM is the identity matrix.

Note that while we use the method by Roweis and Saul [2000] to minimize
the energy in (5.1), we do not fully adopt their local linear embedding (LLE)
method. LLE finds a set of neighbors in a feature space and uses all the

100



5.1. Information-Flow Matting

variables in the feature space to compute the weights in order to reduce the
dimentionality of input data. Manifold-preserving edit propagation [Chen
et al., 2012] and LNSP matting [Chen et al., 2013b] algorithms make use of
the LLE weights directly in their formulation for image matting. However,
since we are only interested in the weighted combination of colors and not
the spatial coordinates, we exclude the spatial coordinates in the energy
minimization step. This increases the validity of the estimated weights, effects
of which can be observed even in the simplest cases such as in Figure 5.1,
where manifold-preserving weight propagation and CMF-only results only
differ in the weight computation step.

The energy term for the color-mixture flow is defined as:

ECM = ∑
p∈U

αp − ∑
q∈N CM

p

wCM
p,q αq

2

. (5.2)

5.1.2. K-to-U Information Flow

The color-mixture flow already provides useful information on how the
mixed-color pixels are formed. However, many pixels in U receive informa-
tion present in the trimap indirectly through their neighbors, all of which
can possibly be in U . This indirect information flow might not be enough
especially for remote regions that are far away from K.

In order to facilitate the flow of information from both F and B directly into
every region in U , we add connections from every pixel in U to several pixels
in K. For each pixel in U , we find KKU = 7 similar pixels in both F and B
separately to form the sets of pixels N Fp and N Bp with K nearest neighbors
search using the feature space [r, g, b, 10 ∗ x̃, 10 ∗ ỹ]T to favor close-by pixels.
We use the pixels in N Fp and N Bp together to represent the pixel color cp by
minimizing the energy in (5.1). Using the resulting weights wFp,q and wBp,q, we
define an energy function to represent the K-to-U flow:

EKU = ∑
p∈U

αp − ∑
q∈NFp

wFp,qαq − ∑
q∈N Bp

wBp,qαq

2

(5.3)

Note that αq = 1 for q ∈ F and αq = 0 for q ∈ B. This fact allows us to define
two combined weights, one connecting a pixel to F and another to B, as:

wFp = ∑
q∈NFp

wFp,q and wBp = ∑
q∈N Bp

wBp,q (5.4)
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Input Ground-truth Without K-to-U flow

Without confidences (ηp) Our method

Figure 5.3.: Direct information flow from both F and B to even the most remote regions
in U increases our performance around holes significantly (top inset). Using confidences
further increases the performance, especially around regions where FG and BG colors are
similar (bottom inset).

such that wFp + wBp = 1, and rewrite (5.3) as:

EKU = ∑
p∈U

(
αp − wFp

)2
. (5.5)

The energy minimization in (5.1) gives us similar weights for all q when cq
are similar to each other. As a result, if N Fp and N Bp have pixels with similar
colors, the estimated weights wFp and wBp become unreliable. We account for
this fact by augmenting the energy function in (5.5) with confidence values.

We can determine the colors contributing to the mixture estimated by (5.1)
using the weights wFp,q and wBp,q:

cFp =
∑q∈NFp wFp,qcq

wFp
, cBp =

∑q∈N Bp wBp,qcq

wBp
, (5.6)

and define a confidence metric according to how similar the estimated fore-
ground color cFp and background color cBp are:

ηp =
∥∥∥cFp − cBp

∥∥∥2
/3. (5.7)

The division by 3 is to get the confidence values between [0, 1]. We update
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Input No K-to-U flow With K-to-U flow

Figure 5.4.: K-to-U flow does not perform well when the foreground object is highly-
transparent. See text for discussion.

the new energy term to reflect our confidence in the estimation:

ẼKU = ∑
p∈U

ηp

(
αp − wFp

)2
. (5.8)

This update to the energy term increases the matting quality in regions with
similar foreground and background colors, as seen in Figure 5.3.

It should be noted that the K-to-U flow is not reliable when the foreground
is highly transparent, as seen in Figure 5.4. This is mainly due to the low
representational power ofN Fp andN Bp for cp around large highly-transparent
regions as the nearest neighbors search does not give us well-fitting pixels
for wFp,q estimation. We construct our final linear system accordingly in
Section 5.1.5.

Pre-processing the trimap

Prior to determining N Fp and N Bp , we pre-process the input trimap in order
to facilitate finding more reliable neighbors, which in turn increases the
effectiveness of the K-to-U flow. Trimaps usually have regions marked as U
despite being fully opaque or transparent, as drawing a very detailed trimap
is both cumbersome and prone to errors.

Several methods [Feng et al., 2016; Karacan et al., 2015] refine the trimap as
a pre-processing step by expanding F and B starting from their boundaries
with U as proposed by Shahrian et al. [2013]. Incorporating this technique
improves our results as shown in Figure 5.5(d). We also apply this extended
F and B regions after the matte estimation as a post-processing. Since this
trimap trimming method propagates known regions only to nearby pixels,
in addition to this edge-based trimming, we also make use of a patch-based
trimming step.
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Input Trimap No trim CS trim Both trims

Figure 5.5.: The trimap is shown overlayed on the original image (b) where the extended
foreground regions are shown with blue (CS trimming [Shahrian et al., 2013]) and cyan
(patch-search) and the extended background regions with red (CS trimming) and yellow
(patch-search). CS trimming makes the fully opaque / transparent regions cleaner, while
our trimming improves the results around remote structures.

To this end, we extend the transparent and opaque regions by relying on
patch statistics. We fit a 3D RGB normal distribution Np to the 3× 3 window
around each pixel p. In order to determine the most similar distribution in F
for a pixel p ∈ U , we first find the 20 distributions with closest mean vectors.
We define the foreground match score bFp = minq∈F B(Np, Nq), where B(·, ·)
represents the Bhattacharyya distance between two distributions. We find
the match score for background bBp the same way. We then select a region for
pixel p according to the following rule:

p ∈


F̂ if bFp < τc and bBp > τf

B̂ if bBp < τc and bFp > τf

Û otherwise

(5.9)

Simply put, an unknown pixel is marked as F̂ , i.e. in foreground after trim-
ming, if it has a strong match in F and no match in B, which is determined by
constants τc = 0.25 and τf = 0.9. By inserting known-alpha pixels in regions
far away from U -K boundaries, we further increase the matting performance
in challenging remote regions (Figure 5.5(e)).

5.1.3. Intra-U Information Flow

Each individual pixel in U receives information through the color-mixture
and K-to-U flows. In addition to these, we would like to distribute the
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information inside U effectively. We achieve this by encouraging pixels with
similar colors inside U to have similar opacity.

For each pixel in U , we find KU = 5 nearest neighbors only inside U to
determine N̂ Up using the feature vector defined as v = [r, g, b, x̃/20, ỹ/20]T.
Notice that we scale the coordinate members of the feature vector we used
in Section 5.1.1 to decrease their effect on the nearest neighbor selection.
This lets N̂ Up have pixels inside U that are far away, so that the information
moves more freely inside the unknown region. We use the neighborhood
N Up = N̂ Up ∪ {q | p ∈ N̂ Uq } to make sure that information flows both ways
between p to q ∈ N̂ Up . We then determine the amount of information flow
using the L1 distance between feature vectors:

wUp,q = max
(
1−

∥∥vp − vq
∥∥

1 , 0
)
∀q ∈ N Up . (5.10)

The energy term for intra-U flow then can be defined as:

EUU = ∑
p∈U

∑
q∈N Up

wUp,q
(
αp − αq

)2 . (5.11)

The information sharing between the unknown pixels increases the matte
quality around intricate structures as demonstrated in Figure 5.2(d).

KNN matting [Chen et al., 2013a] uses a similar affinity definition to make
similar-color pixels have similar opacities. However, relying only on this
form of information flow for the whole image creates some typical artifacts in
the matte. Depending on the feature vector definition and the image colors,
the matte may erroneously underrepresent the smooth transitions (KNN -
HSV case in Figure 5.1) when the neighbors of the pixels in U happen to be
mostly in only F or B, or create flat alpha regions instead of subtle gradients
(KNN - RGB case in Figure 5.1). Restricting information flow to be solely
based on color similarity fails to represent the complex alpha transitions or
wide regions with an alpha gradient.

5.1.4. Local Information Flow

Spatial connectivity is one of the main cues for information flow. We connect
each pixel in U to its 8 immediate neighbors denoted byN L

p to ensure spatially
smooth mattes. The amount of local information flow should also adapt to
strong edges in the image.

To determine the amount of local flow, we rely on the matting affinity defini-
tion proposed by Levin et al. [2008a]. The matting affinity utilizes the local
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patch statistics to determine the weights wL
p,q, q ∈ N L

p . We define our related
energy term as follows:

EL = ∑
p∈U

∑
q∈N L

p

wL
p,q
(
αp − αq

)2 . (5.12)

Despite representing local information flow well, matting affinity by itself
fails to represent large transition regions (Figure 5.1 top), or isolated regions
that have weak or no spatial connection to F or B (Figure 5.1 bottom).

5.1.5. Linear System and Energy Minimization

Our final energy function is a combination of the four energies representing
the individual information flows:

E1 = ECM + σKUEKU + σUUEUU + σLEL + λET , (5.13)

where σKU = 0.05, σUU = 0.01, σL = 1 and λ = 100 are algorithmic constants
determining the strength of corresponding information flows, and

ET = ∑
p∈F

(
αp − 1

)2
+ ∑

p∈B
(αp − 0)2

is the energy term to keep the known opacity values constant. For an image
with N pixels, by defining N × N sparse matrices WCM, WUU and WL that
have non-zero elements for the pixel pairs with corresponding information
flows and the vector wF that has elements wFp for p ∈ U , 1 for p ∈ F and 0
for p ∈ B, we can write (5.13) in matrix form as:

E1 =αTLIFMα + (α−wF )TσKUH(α−wF )+

(α− αK)
TλT (α− αK),

(5.14)

where T is an N × N diagonal matrix with diagonal entry (p, p) 1 if p ∈ K
and 0 otherwise,H is a sparse matrix with diagonal entries ηp as defined in
(5.7), αK is a row vector with pth entry being 1 if p ∈ F and 0 otherwise, α is
a row-vector of the alpha values to be estimated, and LIFM is defined as:

LIFM =(DCM −WCM)T(DCM −WCM)+

σUU (DUU −WUU ) + σL(DL −WL),
(5.15)

where the diagonal matrix D(·)(i, i) = ∑j W(·)(i, j).

The energy in (5.14) can be minimized by solving

(LIFM + λT + σKUH) α = (λT + σKUH)wF . (5.16)
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We define a second energy function that excludes the K-to-U information
flow:

E2 = ECM + σUUEUU + σLEL + λET , (5.17)

which can be written in matrix form as:

E2 = αTLIFMα + (α− αK)
TλT (α− αK), (5.18)

and can be minimized by solving:

(LIFM + λT ) α = λT αK. (5.19)

We solve the linear systems of equations in (5.16) and (5.19) using the precon-
ditioned conjugate gradients method [Barrett et al., 1994].

As mentioned before, the K-to-U information flow is not effective for highly
transparent objects. To determine whether to include the K-to-U information
flow and solve for E1, or to exclude it and solve for E2 for a given image, we
use a simple histogram-based classifier to determine if we expect a highly
transparent result.

If the matte is highly transparent, the pixels in U are expected to mostly have
colors that are a mixture of F and B colors. On the other hand, if the true
alpha values are mostly 0 or 1 except for soft transitions, the histogram of
U will likely be a linear combination of the histograms of F and B as U will
mostly include very similar colors to that of K. Following this observation,
we attempt to express the histogram of the pixels in U , DU , as a linear combi-
nation of DF and DB. The histograms are computed from the 20 pixel-wide
region around U in F and B, respectively. We define the error e, the metric of
how well the linear combination represents the true histogram, as:

e = min
a,b
‖aDF + bDB −DU‖2. (5.20)

Higher e values indicate a highly-transparent matte, in which case we prefer
E2 over E1.

5.2. Matte Regularization for Sampling-Based Matting Methods

Sampling-based natural matting methods usually select samples for each
pixel in U either independently or by paying little attention to spatial co-
herency. In order to obtain a spatially coherent matte, the common prac-
tice is to combine their initial guesses for alpha values with a smoothness
measure. Multiple methods [Feng et al., 2016; Gastal and Oliveira, 2010;
Karacan et al., 2015; Shahrian et al., 2013] adopt the post-processing method
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Input Ground-truth Sampling-based α̂ [Shahrian
et al., 2013]

Regularization by [Gastal and
Oliveira, 2010]

Our regularization

Figure 5.6.: The matte regularization method by Gastal and Oliveira [2010] loses remote
details (top inset) or fills in holes (bottom inset) while our regularization method is able to
preserve these details caught by the sampling-based method.

proposed by Gastal and Oliveira [2010] which combines the matting affinity
[Levin et al., 2008a] with the sampling-based alpha values and corresponding
confidences. This post-processing technique leads to improved mattes, but
since it involves only local smoothness, the results can still be suboptimal as
seen in Figure 5.6(d).

Our approach with multiple forms of information flow can also be used for
post-processing in a way similar to that of Gastal and Oliveira [2010]. Given
the initial alpha values α̂p and confidences η̂p found by a sampling-based
method, we define the matte regularization energy:

ER = E2 + σR ∑
p∈U

η̂p(αp − α̂p)
2, (5.21)

where σR = 0.05 determines how much loyalty should be given to the initial
values. This energy can be written in matrix form and solved as a linear
system in the same way we did in Section 5.1.5.

Figure 5.6 shows that this non-local regularization of mattes is more effective
especially around challenging foreground structures such as long leaves or
holes as seen in the insets. In Section 5.4.2, we will numerically explore the
improvement we achieve by replacing the matte regularization step with
ours in several sampling-based methods.
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Input image Ground truth Only α-transition

Both local flows Color-mix. & local Our result

Figure 5.7.: Color estimation results using a growing set of information flows using
the ground truth matte. The bottom-right in each set shows per-pixel absolute difference
between the estimation and ground truth multiplied by ten. See text for discussion.

5.3. Foreground Color Estimation

In addition to the alpha matte, we need the unmixed foreground colors that
got into the color mixture in transition pixels for seamlessly compositing
the foreground onto a novel background. Similar to Levin et al. [2008a] and
Chen et al. [2013a], we estimate the foreground colors for a given matte, after
the matte estimation.

We propagate the layer colors from opaque and transparent regions in a
similar way we propagate known alpha values in Section 5.1. We make use of
the color-mixture and the intra-U information flows by extending the search
space and affinity computation to include the given alpha values together
with spatial coordinates and pixel colors. We also use the spatial smoothness
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measure proposed by Levin et al. [2008a] in addition to a second spatial
smoothness measure we introduce later in this section. Figure 5.7 shows how
our color estimation result improves as we add more forms of information
flow.

5.3.1. Information Flow Definitions

In the layer color estimation problem, the input is assumed to be the original
image together with an alpha matte. This requires us to redefine the three
regions using the matte instead of a trimap:

p ∈


F̃ if α̃p = 1
B̃ if α̃p = 0
Ũ otherwise.

(5.22)

α̃p denote the alpha values that are given as input. The foreground and
background colors to be estimated will be denoted by f and b. For a pixel p,
the compositing equation we would like to satisfy can be written as:

cp = α̃p f p +
(
1− α̃p

)
bp (5.23)

We will formulate the energy functions for a single color channel and solve
for red, green and blue channels independently. The scalars f and b will
denote the values for a single color channel.

Local information flows

Levin et al. [2008a] proposed the use of the gradient of the alpha channel as
the amount of local information flow for the problem of layer color estimation.
They solely rely on this form of information flow for propagating the colors.
This local information flow basically enforces neighboring pixels to have
similar colors if there is an alpha transition. This flow, which we refer to as
α-transition flow, can be represented by the following energy:

E∇α̃ = ∑
∀p

∑
q∈N L

p

|∇α̃(p−q)|
((

fp − fq
)2

+
(
bp − bq

)2
)

, (5.24)

where ∇α̃ represents the alpha gradient. We compute the gradients in the
image plane using the 3-tap separable filters of Farid and Simoncelli [2004].
Note that the neighborhood is defined as the local 3× 3 neighborhood similar
to the local information flow in Section 5.1.4.
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The transition flow helps around small regions with alpha gradient but does
not propagate information in flat-alpha regions, such as pure foreground or
background regions or regions with flat opacity. We propose a new smooth-
ness measure to address this issue, which we call no-transition flow. The
no-transition flow enforces spatial smoothness in regions with small color
and alpha gradients:

E∇cα̃ = ∑
∀p

∑
q∈N L

p

w∇cα̃
p,q

((
fp − fq

)2
+
(
bp − bq

)2
)

(5.25)

where w∇cα̃
p,q =

(
1− |∇α̃(p−q)|

) (
1− ||∇c(p−q)||

)
and ||∇c(p−q)|| is the L2

norm of the vector formed by gradients of the individual color channels. This
term increases the performance around slow alpha transitions and flat-alpha
regions, as well as around sharp color edges in the image.

No-transition flow already improves the performance quite noticably as seen
in Figure 5.7(b). However, using only local information flows perform poorly
in remote areas such as the end of long hair filaments (Figure 5.12(a)) or
isolated areas (Figure 5.7, bottom inset). In order to increase the performance
in these type of challenging areas, we make use of two types of non-local
information flows.

Color-mixture information flow

The basic principle of color mixture as introduced in Section 5.1.1 also applies
to the relationship between layer colors of pixels in the same neighborhood —
if we represent the color and alpha of a pixel as a weighted combination of
the colors and alpha of several others, those weights should also represent
the layer color relation between the pixels. Since we have α̃’s as additional
information in the layer color estimation scenario, we extend the formulation
of color-mixture flow to better fit the layer color estimation problem. Sim-
ilar to its use in alpha estimation, it provides a well-connected graph and
allows dense share of information. The performance improvement by the
introduction of the color-mixture energy can be seen in Figure 5.7(c).

In the layer color estimation scenario, we optimize for both foreground and
background colors in the same formulation. It should be emphasized that,
as it is apparent from (5.23), the foreground and background colors are
undefined for regions with α̃ = 0 and α̃ = 1, respectively. This requires
us to avoid using color-mixture flow into Ũ from B̃ for f and from F̃ for
b. We address this by defining two different neighborhoods and computing
individual color-mixture flows for f and b.

111



Effective Inter-Pixel Information Flow for Natural Image Matting

For f , we define the neighborhood N Ũ F̃p by finding KCM nearest neighbors
in (Ũ ∪ F̃ ) using the feature vector [r, g, b, α̃, x̃, ỹ]T. We then compute the
weights wCF̃

p,q as

arg min
wCF̃

p,q

∥∥∥∥∥∥
[

cp
α̃p

]
− ∑

q∈N CM
p

wCF̃
p,q

[
cq
α̃q

]∥∥∥∥∥∥
2

. (5.26)

Notice that the search space and the weight computation includes α̃ in addi-
tion to the color and location of pixels.

We compute the background conjugates of the neighborhood and weights,
N Ũ B̃p and wCB̃

p,q , in the same way, and define our color-mixture energy for
layer color estimation:

E f b
CM = ∑

p∈Ũ
(( fp − ∑

q∈N Ũ F̃p

wCF̃
p,q fq)

2 + (bp − ∑
q∈N Ũ B̃p

wCB̃
p,q bq)

2).

Intra-Ũ information flow

Intra-U information flow, as detailed in Section 5.1.3, distributes the infor-
mation between similar-colored pixels inside the unknown region without
giving spatial proximity too much emphasis. Its behaviour is also very useful
in the case of color estimation, as it makes the foreground colors more coher-
ent throughout the image. For example, in Figure 5.7, bottom inset shows
that the addition of intra-U flow helps in getting a more realistic color to the
isolated plastic region between the two black lines.

We make modifications to intra-U flow similar to the modifications we made
to color-mixture flow, in order to make use of the available information
coming form α̃’s.

We find KU nearest neighbors only inside Ũ to determine N̂ Ũp using the
feature vector defined as vc = [r, g, b, α̃, x̃/20, ỹ/20]T. We then determine the
amount of information flow between two non-local neighbors as:

wŨp,q = max
(

1−
∥∥∥vc

p − vc
q

∥∥∥
1

, 0
)
∀q ∈ N Ũp . (5.27)

With the weights determined, we can define the energy function representing
the intra-Ũ flow:

EŨ Ũ = ∑
p∈Ũ

∑
q∈N Ũp

wŨp,q

((
fp − fq

)2
+
(
bp − bq

)2
)

. (5.28)
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Note that in the color estimation formulation, we exclude the K-to-U in-
formation flow because we observed that the adaptation of the method in
Section 5.1.2 to color estimation does not improve the quality of the final
result.

5.3.2. Linear System and Energy Minimization

The final energy function for layer color estimation is the combination of the
four types of information flow defined in Sections 5.3.1 to 5.3.1:

Ec = σLE∇α + σLE∇cα + E f b
CM + σUUEŨ Ũ + λECOMP, (5.29)

where σL, σUU and λ are defined in Section 5.1.5 and ECOMP represents the
deviation from the compositing equation constraint:

ECOMP = ∑
∀p

(
cp − αI

p f − (1− αI
p)b
)2

. (5.30)

Ec is defined and minimized independently for each color channel.

Following the same strategy as we did in Section 5.1.5, we rewrite the energy
function Ec in the matrix form, this time as a 2N × 2N linear system, and
solve it for foreground and background colors for 3 times, once for each color
channel, using the preconditioned conjugate gradients method [Barrett et al.,
1994].

5.4. Experimental Evaluation

We evaluate the proposed methods for matting, matte regularization, layer
color estimation and green-screen keying with comparisons to the state-of-
the-art of each application.

5.4.1. Matte Estimation

We quantitatively evaluate the proposed algorithm using the public alpha
matting benchmark [Rhemann et al., 2009] in Table 5.1. At the time of initial
publication, our method ranked in the first place according to the sum-of-
absolute-differences (SAD) and mean-squared error (MSE) metrics. Our
proof-of-concept implementation in Matlab requires on average 50 seconds
to process a benchmark image.

Our performance in the test set by Xu et al. [2017] is shown in Table 5.2.
This test set of 1000 images accompany a data-driven approach to matting.
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5.4. Experimental Evaluation

Figure 5.8.: Several examples from the alpha matting benchmark [Rhemann et al., 2009]
are shown (a) with trimaps overlayed onto the images (b). The mattes are computed by
closed-form matting [Levin et al., 2008a] (c), KNN matting [Chen et al., 2013a] (d),
manifold-preserving edit propagation [Chen et al., 2012] (e), LNSP matting [Chen et al.,
2013b] (f), DCNN matting [Cho et al., 2019] (g) and the proposed method (h).
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Figure 5.9.: Several examples from the alpha matting benchmark [Rhemann et al., 2009]
are shown (a) with trimaps overlayed onto the images (b). The mattes are computed by
closed-form matting [Levin et al., 2008a] (c), KNN matting [Chen et al., 2013a] (d),
manifold-preserving edit propagation [Chen et al., 2012] (e), LNSP matting [Chen et al.,
2013b] (f), DCNN matting [Cho et al., 2019] (g) and the proposed method (h).
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Table 5.2.: Matting performance on the test set of DIM [Xu et al., 2017].

SAD MSE

DIM [Xu et al., 2017] 50.4 0.014

Ours 100.6 0.038

DCNN [Cho et al., 2019] 161.4 0.087

CF [Levin et al., 2008a] 168.1 0.091

KNN [Chen et al., 2013a] 175.4 0.103

Table 5.3.: Average percentage performance change with changing parameters using 27
images and 2 trimaps from the benchmark.

Param. Def. Val. Perf. Val. Perf. Val. Perf. Val. Perf.

KCM 20 10 1.07 % 15 0.44 % 25 -0.46 % 30 -0.62 %

KK−U 7 1 -0.83 % 4 -0.41 % 10 0.12 % 13 0.22 %

KU−U 5 1 -0.15 % 3 -0.1 % 7 0.08 % 9 0.11 %

σK−U 0.05 0.01 -6.44 % 0.025 -2.1 % 0.075 0.66 % 0.09 0.87 %

σU−U 0.01 0.001 -0.7 % 0.005 -0.1 % 0.02 -0.47 % 0.05 -3.12 %

One advantage of using a deep network for this problem, such as DIM [Xu
et al., 2017], is that the network can infer the matte even when there is no
foreground region defined in the trimap due to heavy transparency, and
their test set includes several such examples. Affinity-based and sampling-
based approaches, however, assume both known regions are present when
they are modeling the color models of affinities. While this can be seen as a
shortcoming, the images without well-defined regions inadvertently skew
the scores in this dataset. We perform better than competing methods except
for DIM in this dataset, and our scores improve to be 76.5 (SAD) and 0.021
(MSE) when the images that violate our assumptions are removed.

We also compare our results qualitatively with the closely related methods
in Figure 5.8. We use the results that are available on the matting bench-
mark for all except manifold-preserving matting [Chen et al., 2012] which we
implemented ourselves. Figure 5.8(c,d,e) show that using only one form of
information flow is not effective in a number of scenarios such as wide un-
known regions or holes in the foreground. The strategy DCNN matting [Cho
et al., 2019] follows is using the results of closed-form and KNN matting
directly rather than formulating a combined energy using their affinity defi-
nitions. When both methods fail, the resulting combination also suffers from
the errors as it is apparent in the pineapple and troll examples. The neural net-
work they propose also seems to produce mattes that appear slightly blurred.
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Input and ground-truth Regularization of KL-D [Karacan et al., 2015]

Reg. of SM [Gastal and Oliveira, 2010] Regularization of CS [Shahrian et al., 2013]

Figure 5.10.: Matte regularization using the proposed method (cyan) or [Gastal and
Oliveira, 2010] (magenta) for three sampling-based methods (yellow). Our method is able
to preserve remote details while producing a clean matte (top inset) and preserve sharpness
even around textured areas (bottom).

LNSP matting [Chen et al., 2013b], on the other hand, has issues around
regions with holes (pineapple example) or when the foreground and back-
ground colors are similar (donkey and troll examples). It can also oversmooth
some regions if the true foreground colors are missing in the trimap (plastic
bag example). Our method performs well in these challenging scenarios
mostly because of the intra-unknown and unknown-to-known connections
which results in a more robust linear system.

We evaluate the sensitivity of our method against different parameter values
on the training dataset of the matting benchmark [Rhemann et al., 2009].
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Input and ground-truth Regularization of KL-D [Karacan et al., 2015]

Reg. of SM [Gastal and Oliveira, 2010] Regularization of CS [Shahrian et al., 2013]

Figure 5.11.: Matte regularization using the proposed method (cyan) or [Gastal and
Oliveira, 2010] (magenta) for three sampling-based methods (yellow). Our method is able
to correct errors in the initial mattes around remote holes in the foreground (bottom inset).

Table 5.4.: Performance improvement achieved when our matte regularization method
replaces [Gastal and Oliveira, 2010] in the post-processing steps of 3 sampling-based
methods. The training dataset in [Rhemann et al., 2009] was used for this experiment.

Sum of Absolute Differences Mean Squared Error

Overall S L Overall S L

KL-D [Karacan et al., 2015] 24.4 % 22.4 % 26.5 % 28.5 % 25.9 % 31.0 %

SM [Gastal and Oliveira, 2010] 6.0 % 3.7 % 8.4 % 13.6 % 8.5 % 18.8 %

CS [Shahrian et al., 2013] 4.9 % 10.0 % -0.1 % 18.7 % 25.5 % 11.8 %
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Table 5.3 shows that different values for the parameters generally have only a
small effect on the performance on average.

5.4.2. Matte Regularization

We also compare the proposed post-processing method detailed in Section 5.2
with the state-of-the-art method by Gastal and Oliveira [2010] on the train-
ing dataset provided by Rhemann et al. [2009]. We computed the non-
smooth alpha values and confidences using the publicly available source
code for comprehensive sampling [Shahrian et al., 2013], KL-divergence sam-
pling [Karacan et al., 2015] and shared matting [Gastal and Oliveira, 2010].
Table 5.4 shows the percentage improvement we achieve over Gastal and
Oliveira [2010] for each algorithm using SAD and MSE as error measures.
Figure 5.10 shows an example for regularizing all three sampling-based meth-
ods. As the information coming from alpha values and their confidences
found by the sampling-based method is distributed more effectively by the
proposed method, the challenging regions such as fine structures or holes
detected by the sampling-based method are preserved when our method is
used for post-processing.

5.4.3. Layer Color Estimation

We evaluate our layer color estimation method against the closed-form
color estimation [Levin et al., 2008a] and KNN colors [Chen et al., 2013a],

Table 5.5.: Layer color estimation perfor-
mance on the test set of DIM [Xu et al., 2017].

SAD MSE

Ours 3.8× 103 6.9× 10−4

CF [Levin et al., 2008a] 4.3× 103 9.2× 10−4

KNN [Chen et al., 2013a] 4.7× 103 8.4× 10−4

on the test set of deep image
matting [Xu et al., 2017] using
the ground-truth alphas as in-
put. Closed-form colors only use
a single local affinity to prop-
agate the colors from the fore-
ground, and this creates artifacts
around holes in the foreground
(Figure 5.12, top) or incorrect col-
ors being propagated to nearby regions (bottom). KNN colors, on the other
hand, uses only the similarity affinity and it typically generates flat-colored
regions, which results in erroneous values especially around hair and fur.
Our multi-affinity approach is able to correctly estimate the colors even in
the isolated regions or intricate structures. These properties are also reflected
in the quantitative comparison, as shown in Table 5.5.
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Figure 5.12.: Color estimation results by closed-form matting [Levin et al., 2008a] (c),
KNN matting [Chen et al., 2013a] (d) and the proposed method (e) together with the ground
truth colors and matte (b). The bottom-right in each set shows per-pixel absolute difference
between the estimation and ground truth multiplied by ten. See text for discussion.
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5.5. Spectral Analysis

The spectral clusters formed by Laplacians of affinity matrices can be effec-
tively used to reveal characteristics of the constructed graph structure. For
instance, Levin et al. [2008a] analyze the matting affinity by looking at eigen-
vectors corresponding to the smallest eigenvalues of the matting Laplacian.
Spectral matting [Levin et al., 2008b] uses the eigenvectors together with a
sparsity prior to create a set soft segments, or alpha components, that represent
compact clusters of eigenvectors and add up to one for each pixel. The alpha
components provide a more distilled and clear visualization to analyze the
affinity matrix. In this section, we use the matting components computed
using different subsets of information flows we defined for matte estimation
to reveal the contribution of different flows at a higher level.

We compute the alpha components shown in Figure 5.13 using the public
source code by Levin et al. [2008b]. We exclude the K-to-U flow, which is
only defined for the unknown regions as it requires explicitly defined known
regions. The resulting Laplacian matrix does not give meaningful spectral
clustering because of the pixels with missing connections. We overcome this
issue for intra-U flow by defining it for the entire image instead of only the un-
known region. In our matting formulation, we use the color-mixture flow to
create the main source of information flow between close-by similarly-colored
pixels. This approach creates densely connected graphs as both spatial and
color distances are well accounted for in the neighborhood selection. We
observed that spectral matting may fail to create as many components as re-
quested (10 in our experiments) in some images, as many regions are heavily
interconnected. Using the weighted average of neighboring colors for the
flow creates soft transitions between regions.

The intra-U flow connects pixels that have similar colors, with very little
emphasis on the spatial distance. This creates a color-based segmentation of
the pixels, but as we compute the weights based on the feature distances, it is
not typically able to create soft transitions between regions. Rather, it creates
components with alpha values at zero or one, or flat alpha regions with alpha
values near 0.5.

The local information flow, used as the only form of flow in the original
spectral matting, creates locally connected components with soft transitions.

We observed a harmonious combination of positive aspects of these affinity
matrices as they are put together to create our graph structure. This provides
a neat confirmation of our findings in the evaluation of our algorithm. We an-
alyze the characteristics of each flow more in detail through visual examples
in the remainder of this section.
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The top example in Figure 5.13 shows an input image with the matting com-
ponents that include the green and the pink hair. Color-mixture affinities give
components that demonstrate the color similarity and soft transitions, but
they typically bleed out of the confined regions of specific colors due to the
densely connected nature of the graph formed by corresponding neighbor-
hoods. We clearly see the emphasis on color similarity for intra-U flow. While
the color clusters are apparent, one can easily observe that unrelated pixels
get mixed into the clusters especially around transition regions between other
colors. We see a significant improvement already when these two flows are
combined. When the local information flow is added, which gives spatially
confined clusters of many colors when used individually, we see smooth
clusters of homogeneous colors. The intricate transitions that were missed in
the lack of the local flow are successfully captured when all three flows are
included in the Laplacian definition.

The spatial connectivity versus color similarity characteristics are even more
clearly observable in the bottom example of Figure 5.13. We see that bright
and dark brown of the fur is clearly separated by intra-U flow in this example.
In contrast, color-mixture and local flows separate the fur into three spatial
clusters and the sweater into two separate clusters despite the uniform color.
The combination, however, is able to successfully separate the dark and bright
brown of the fur with smooth transitions.

The full Laplacian matrix we propose in this work blends the nonlocality
of colors and spatial smoothness naturally. This is the key characteristic of
the proposed matting method. When combined with K-to-U flow which
addresses remote regions and holes inside the foreground, the proposed
algorithm is able to achieve high performance in a variety of images as
analyzed in Section 5.4.

5.6. Sampling-Based Methods and K-to-U Flow

The K-to-U flow introduced in Section 5.1.2 connects every pixel in the
unknown region directly to several pixels in both foreground and background.
While the amount of flow from each neighbor is individually defined by the
computed color-mixture weights, we simplify the formulation and increase
the sparsity of our linear system using some algebraic manipulations. These
manipulations, in the end, give us the weights wFp that go into the final energy
formulation.

These weights, which show the connection of the unknown pixel to the fore-
ground, are essentially an early estimation of the matte. This estimation is
done by individually selecting a set of neighbors for each pixel and computing
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an alpha based on the neighbor colors. While our approach is fundamen-
tally defining affinities, it has parallels with sampling-based approaches in
natural matting [Shahrian et al., 2013; Karacan et al., 2015; Feng et al., 2016;
Johnson et al., 2016], which also select samples from foreground and back-
ground and estimates alpha values based on sample colors. We compute
confidence values for wFp that depends on the similarity of colors of neigh-
bors from the foreground and background. Sampling-based approaches also
define confidence values for their initial estimation, typically defined by the
compositing error, ‖c− (α f − (1− α)b)‖2.

Conceptually, there are several fundamental differences between our com-
putation of K-to-U flow and common strategy followed by sampling-based
methods. The major difference is how the samples are collected. Sampling-
based methods first determine a set of samples collected from known-alpha
regions and do a selection for unknown pixels from this predetermined set
using a set of heuristics. We, on the other hand, select neighbors for each
unknown pixel individually via a k nearest neighbors search in the whole
known region. Using the samples, state-of-the-art methods typically use
the compositing equation to estimate the alpha value from only one sample
pair (a notable exception is CSC matting [Feng et al., 2016]), while we use 14
samples in total to estimate the alpha by solving the overconstrained system
using the method by Roweis and Saul [2000]. These differences also change
the computation time. K-to-U flow can be computed in several seconds,
while sampling-based algorithms typically take several minutes per image
due to sampling and sample pair selection steps.

In order to compare the performance of K-to-U flow as a sampling-based
method in a neutral setting, in this experiment, we post-process wFp and our
confidence values using the common regularization step [Gastal and Oliveira,
2010] utilized by top-performing sampling-based methods in the benchmark.
The quantitative results can be seen in Table 5.6.

As discussed in Section 5.1.2, K-to-U flow fails in the case of a highly-
transparent matte (net and plastic bag examples). This is due to the fail-
ure to find representative neighbors using the k nearest neighbor search.
Sampling-based methods are more successful in these cases due to their use
of compositing error in the sample selection. However, in the other examples,
K-to-U flow appears as the top-performing method among the sampling-
based methods in 12 of 18 image-trimap pairs and gives comparable errors in
the rest.

The performance of our affinity-inspired approach against the state-of-the-
art [Shahrian et al., 2013; Karacan et al., 2015; Feng et al., 2016; Johnson et al.,
2016] gives us some pointers for a next-generation sampling-based matting
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5.7. Limitations

Figure 5.14.: Our method fails gracefully in the case of sparse trimaps.

method. While one can argue that the sampling algorithms have reached
enough sophistication, selection of a single pair of samples for each unknown
pixel seems to be a limiting factor. Methods that address the successful and
efficient selection of many samples for each unknown pixel will be more likely
to surpass state-of-the-art performance. Furthermore, determining the alpha
values using more robust weight estimation formulations such as (5.1) instead
of the more simple compositing equation (5.23) will likely improve the result
quality.

5.7. Limitations

As discussed in corresponding sections, the K-to-U flow does not perform
well in the case of highly-transparent mattes. We solve this issue via a
simple classifier to detect highly-transparent mattes before alpha estimation.
However, this does not solve the issue for foreground images that partially
have transparent regions. For such cases, a locally changing set of parameters
could be the solution.

The proposed matte estimation algorithm assumes dense trimaps as input. In
the case of sparse trimaps, generally referred as scribble input, our method
may fail to achieve its original performance, as seen in Figure 5.14. This
performance drop is mainly due to the K-to-U flow, which fails to find good
neighbors in limited known regions, and intra-U flow which propagates
alpha information based solely on color to spatially far away pixels inside
the unknown region.
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C H A P T E R 6
Semantic Soft Segmentation

We seek to automatically generate a soft segmentation of the input image, that
is, a decomposition into layers that represent the objects in the scene including
transparency and soft transitions when they exist. Each pixel of each layer
is augmented with an opacity value α ∈ [0, 1] with α = 0 meaning fully
transparent, α = 1 fully opaque, and in-between values indicating the degree
of partial opacity. Similar to our study of soft color segmentation in Chapter 4,
we use an additive image formation model:

(R, G, B)input = ∑i αi(R, G, B)i (6.1a)

∑i αi = 1, (6.1b)

i.e., we express the input RGB pixels as the sum of the pixels in each layer i
weighted by its corresponding α value. We also constrain the α values to sum
up to 1 at each pixel, representing a fully opaque input image.

The core of our approach uses the same formalism as spectral matting in
formulating the soft segmentation task as an eigenvector estimation prob-
lem [Levin et al., 2008b]. The core component of this approach is the creation
of a Laplacian matrix L that represents how likely each pair of pixels in the
image is to belong to the same segment. While spectral matting builds this
matrix using only low-level local color distributions, we describe how to
augment this approach with nonlocal cues and high-level semantic informa-
tion. The original approach also describes how to create the layers from the
eigenvectors of L using sparsification.

Forming the soft segments only from a limited set of eigenvectors usually
results in matte sparsity issues around the object boundaries. We propose an
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Semantic Soft Segmentation

Figure 6.1.: We propose a method that can generate soft segments, i.e. layers that rep-
resent the semantically meaningful regions as well as the soft transitions between them,
automatically by fusing high-level and low-level image features in a single graph structure.
The semantic soft segments, visualized by assigning each segment a solid color, can be used
as masks for targeted image editing tasks, or selected layers can be used for compositing
after layer color estimation.

unconstrained matte sparsification formulation to address this issue, where
the initial soft segment proposals are fed into a linear system that enforces
matte sparsity at the pixel-level. Once sparsified using this method, the
semantic soft segments can be effectively used in targeted image editing and
compositing tasks. Our matte sparsification algorithm uses the same graph
structure we use for the initial spectral segmentation, and can be used to post-
process any matte that suffers from sparsity issues. Figure 6.1 shows several
semantic soft segmentation examples, and Figure 6.2 shows an overview of
our approach.
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Semantic Soft Segmentation

6.1. Background on Spectral Matting

Our approach builds upon the work of Levin et al. [2008a; 2008b]. They
first introduced the matting Laplacian that uses local color distributions
to define a matrix L that captures the affinity between each pair of pixels
in a local patch, typically 5 × 5 pixels. Using this matrix, they minimize
the quadratic functional αTLα subject to user-provided constraints, with α

denoting a vector made of all the α values for a layer. This formulation shows
that the eigenvectors associated to small eigenvalues of L play an important
role in the creation of high-quality mattes. Motivated by this observation,
their subsequent work on spectral matting used the eigenvectors of L to
build a soft segmentation [Levin et al., 2008b]. Each soft segment is a linear
combination of the K eigenvectors corresponding to the smallest eigenvalues
of L that maximizes matting sparsity, i.e., minimizes the occurrence of partial
opacity. The segments are created by minimizing an energy function that
favors α = 0 and α = 1:

arg min
{yi}

∑
i,p
|αip|γ + |1− αip|γ with: αi = Eyi (6.2a)

subject to: ∑
i

αip = 1, (6.2b)

where αip is the α value of pth pixel of the ith segment, E is a matrix containing
the K eigenvectors of L with smallest eigenvalues, yi is the linear weights on
the eigenvectors that define the soft segments, and γ < 1 is a parameter that
controls the strength of the sparsity prior.

While spectral matting generates satisfying results when the image contains
a single well-identified object with distinct colors, it struggles with more
complex objects and scenes. Being based solely on the matting Laplacian that
considers only low-level statistics of small patches, it is limited in its ability
to identify objects. In our work, we extend this approach to fuse semantic
features in the same Laplacian formulation and capture higher-level concepts
like scene objects and to have a broader view of the image data.

6.1.1. Affinity and Laplacian Matrices

Levin et al. [2008a] formulate their approach as a least-squares optimization
problem that directly leads to a Laplacian matrix. An alternative approach is
to express the affinity between pairs of pixels, following our work on natural
matting in Chapter 5. Pairs with a positive affinity are more likely to have
similar values, zero-affinity pairs are independent, and pairs with a negative
affinity are likely to have different values. In this work, we will use the
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6.2. Spectral Segmentation with Low- and High-Level Features

affinity approach and build the corresponding normalized Laplacian matrix
using the well-known formula:

L = D−
1
2 (D−W)D−

1
2 , (6.3)

where W is a square matrix containing the affinity between all pairs of pixels
and D is the corresponding degree matrix, i.e. a diagonal matrix with ele-
ments W1, 1 being a row vector of ones. As noted by Levin et al., L may not
always be a true graph Laplacian due to the presence negative affinities, but
nonetheless shares similar properties such as being positive semidefinite.

6.2. Spectral Segmentation with Low- and High-Level Features

In addition to the matting affinity, we will introduce two additional affinity
definitions, one based on colors and the other based on high-level semantic
features, to build a graph structure that reveals the object boundaries readily
in its eigenvectors.

6.2.1. Nonlocal Color Affinity

We define an additional low-level affinity term that represents color-based
longer-range interactions. A naive approach would be to use larger patches
in the definition of the matting Laplacian. However, this option quickly
becomes impractical because it renders the Laplacian matrix denser. Another
option is to sample pixels from a nonlocal neighborhood to insert connection
while preserving some sparsity in the matrix. We have shown good results
for medium-range interaction with such sampling with the intra-U flow in
Chapter 5. However, this strategy faces a trade-off between sparsity and
robustness: fewer samples may miss important image features and more
samples make the computation less tractable.

We propose a guided sampling based on an oversegmentation of the image.
We generate 2500 superpixels using SLIC [Achanta et al., 2012] and estimate
the affinity between each superpixel and all the superpixels within a radius
that corresponds to 20% of the image size. The advantage of this approach
is that each feature large enough to be a superpixel is represented, sparsity
remains high because we use a single sample per superpixel, and it links pos-
sibly disconnected regions by using a large radius, e.g. when the background
is seen through a hole in an object. Formally, we define the color affinity wC

s,t
between the centroids of two superpixels s and t separated by a distance less
than 20% of the image size as:

wC
s,t = (erf (ac (bc − ‖cs − ct‖)) + 1) / 2, (6.4)
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Semantic Soft Segmentation

Image and features Without color conn. Our result

Figure 6.3.: The color-based nonlocal affinity we include helps the decomposition re-
cover isolated regions such as disconnected background regions or long extensions, as the
highlights point out. Image from [Lin et al., 2014].

where cs and ct are the average colors of the superpixels of s and t that lies in
[0, 1], erf is the Gauss error function, and ac and bc are parameters controlling
how quickly the affinity degrades and the threshold where it becomes zero.
erf takes values in [−1, 1] and its use here is mainly motivated by its sigmoidal
shape. We use ac = 50 and bc = 0.05 in all our results. This affinity essentially
makes sure the regions with very similar colors stay connected in challenging
scene structures, and its effect is demonstrated in Figure 6.3.

6.2.2. High-Level Semantic Affinity

While the nonlocal color affinity adds long-range interactions to the segmen-
tation process, it remains a low-level feature. Our experiments show that,
without additional information, the segmentation still often merges image re-
gions of similar color that belong to different objects. To create segments that
are confined in semantically similar regions, we add a semantic affinity term,
that is, a term that encourages the grouping of pixels that belong to the same
scene object and discourages that of pixels from different objects. We build
upon prior work in the domain of object recognition to compute a feature
vector at each pixel that correlates with the underlying object. We compute
the feature vectors via a neural network, as described in Section 6.4. The
feature vectors are generated such that for two pixels p and q that belong to
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6.2. Spectral Segmentation with Low- and High-Level Features

Figure 6.4.: The image (a) and semantic features (b) are shown with several eigenvectors
corresponding to some of the smallest eigenvalues1 of the proposed Laplacian matrix (c, top
row) and the matting Laplacian as used in spectral matting [Levin et al., 2008b] (d, bottom
row). Green represents the positive values of an eigenvector while red shows negative. Our
Laplacian matrix strongly reveals the semantic cuts in the eigenvectors while the matting
Laplacian eigenvectors extend beyond the semantic edges, as the highlighted areas show.
Image from [Lin et al., 2014].

the same object f p and f q are similar, i.e. ‖ f p − f q‖ ≡ 0, and for a third pixel
r in a different semantic region, f r is far away, i.e. ‖ f p − f q‖ � ‖ f p − f r‖.
We define the semantic affinity also over superpixels. In addition to increas-
ing the sparsity of the linear system, the use of superpixels also decrease the
negative effect of the unreliable feature vectors in transition regions, as appar-
ent from their blurred appearance in Figure 6.5. The superpixel edges are not
directly used in the linear system, the connections in the graph are between
superpixel centroids. This information from the centroids then spreads to
nearby pixels while respecting the image edges with the matting affinity term.
With these vectors and the same oversegmentation in the previous section
(§ 6.2.1), for each superpixel s, we associate its average feature vector f̃ s to

1In fact, the eigenvector corresponding to the smallest eigenvalue is not shown here as it is a
constant vector for both matrices.
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Only matting Laplacian With semantic conn. Our full Laplacian

Figure 6.5.: The results of our entire pipeline using only the matting Laplacian (a),
matting and semantic Laplacians (b) and the two together with the sparse color connections
(c), for the image shown in Figure 6.4. The top row shows a distinct color for each produced
soft segment, and the bottom row shows the extracted matte corresponding to the person.
Due to the eigenvectors that are unable to represent the semantic cut between the person and
the background, using only matting Laplacian results in the person soft segment including
large portions of the background, as highlighted. Adding the sparse color connections
provides a cleaner foreground matte.

its centroid s. We use these vectors to define an affinity term between each
adjacent superpixels s and t:

wS
s,t = erf

(
as (bs − ‖ f̃ s − f̃ t‖)

)
, (6.5)

with as and bs parameters controlling the steepness of the affinity function
and when it becomes negative. We discuss how to set them in Section 6.4.
Defining negative affinities help the graph disconnect different objects while
the positive values connect regions that belong to the same object.

Unlike the color affinity, the semantic affinity only relates nearby superpixels
to favor the creation of connected objects. This choice of a nonlocal color
affinity together with a local semantic affinity allows creating layers that can
cover spatially disconnected regions of the same semantically coherent region.
This often applies to elements like greenery and sky that often appear in the
background, which makes them likely to be split into several disconnected
components due to occlusions. As a result of including the local semantic
affinity, the eigenvectors of L reveal object boundaries as demonstrated in
Figure 6.5 and 6.4.
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6.2. Spectral Segmentation with Low- and High-Level Features

6.2.3. Creating the Layers

We create the layers by using the affinities described earlier in this section
to form a Laplacian matrix L. We extract the eigenvectors from this matrix
and use a two-step sparsification process to create the layers from these
eigenvectors.

Forming the Laplacian matrix

We form a Laplacian matrix L by adding the affinity matrices together and
using Equation 6.3:

L = D−
1
2
(

D− (WL + σSWS + σCWC)
)

D−
1
2 (6.6)

where WL is the matrix containing the matting affinities, WC the matrix con-
taining the nonlocal color affinities (§ 6.2.1), WS the matrix with the semantic
affinities (§ 6.2.2), and σS and σC parameters controlling the influence of each
term, both set to be 0.01.

Constrained sparsification

We extract the eigenvectors corresponding to the 100 smallest eigenvalues of
L. We form an intermediate set of layers using the optimization procedure
by Levin et al. [2008b] on Eq. 6.2 with γ = 0.8. Unlike spectral matting that
uses k-means clustering on the eigenvectors to initialize the optimization,
we use k-means clustering on the pixels represented by their feature vectors
f . This initial guess is more consistent with the scene semantics and yields
a better soft segmentation. We generate 40 layers with this approach and
in practice, several of them are all zeros, leaving 15 to 25 nontrivial layers.
We further reduce the number of layers by running the k-means algorithm
with k = 5 on these nontrivial layers represented by their average feature
vector. This approach works better than trying to directly sparsify the 100
eigenvectors into 5 layers, because such drastic reduction makes the problem
overly constrained and does not produce good-enough results, especially in
terms of matte sparsity. The initially estimated soft segments before and after
grouping are shown in Figure 6.6. We have set the number of segments to
5 without loss of generalization; while this number could be set by the user
depending on the scene structure, we have observed that it is a reasonable
number for most images. Because these 5 layers are constrained to lie within
the subspace of a limited number of eigenvectors, the achieved sparsity is
suboptimal, leaving many semi-transparent regions in the layers, which is
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Semantic Soft Segmentation

Figure 6.6.: The input image and computed semantic features are shown with the initially
estimated soft segments with many layers (middle) and the intermediate soft segments after
grouping (right). The soft segments are visualized by assigning each segment a solid color.
Note that these results are refined further with relaxed sparsification. Images from [Lin et
al., 2014].

unlikely in common scenes. Next, we introduced a relaxed version of the
sparsity procedure to address this issue.

6.3. Relaxed Sparsification of Soft Segments

To improve the sparsity of the layers, we relax the constraint that they are
a linear combination of the eigenvectors. Instead of working with the coef-
ficients yi of the linear combination (Eq. 6.2), in this step, each individual
α value is an unknown. We define an energy function that promotes matte
sparsity on the pixel-level while respecting the initial soft segment estimates
from the constrained sparsification and the image structure. We now define
our energy term by term.

The first term relaxes the subspace constraint and only ensures that the
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6.3. Relaxed Sparsification of Soft Segments

Figure 6.7.: The images (a) and features (b) are shown with the results before pixel-level
sparsification (c) and after (d). Color-coded segments are shown with a single alpha channel
that corresponds to the foreground objects. This final step cleans spurious alpha values that
occur due to the limited expressional power of the eigenvectors while preserving the soft
transitions. The bottom example also features a sparsification result that uses a constant 0.9
as sparsity parameter γ (e), while we use spatially-varying γp which relaxes the sparsity
constraint in transition regions. The effect of this can be seen in the inset, as our result (d)
preserves the soft transitions around the hair while a constant parameter (e) results in an
overly sparse result. Images from [Lin et al., 2014].
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generated layers remain close to the layers α̂ created with the constrained
sparsification procedure:

EF = ∑
ip

(
αip − α̂ip

)2 . (6.7)

We also relax the sum-to-one requirement (Eq. 6.1b) to be integrated into the
linear system as a soft constraint:

EC = ∑
p

(
1−∑

i
αip

)2
, (6.8)

where αip is the α value of the pth pixel in the ith layer. The next term is
the energy defined by the Laplacian L defining the spatial propagation of
information defined in Eq.6.6:

EL = ∑
i

αT
i Lαi. (6.9)

Finally, we formulate a sparsity term that adapts to the image content. Intu-
itively, partial opacities come from color transitions in the image because in
many cases, it corresponds to a transition between two scene elements, e.g.,
the fuzzy transition between a teddy bear and the background. We use this
observation to build a spatially varying sparsity energy:

ES = ∑
i,p
|αip|γ̃p + |1− αip|γ̃p (6.10a)

with: γ̃p = min(0.9 + ‖∇cp‖, 1), (6.10b)

where ∇cp is the color gradient in the image at pixel p computed using the
separable kernels of Farid and Simoncelli [2004]. We design this term such
that when γ̃p = 1 on image regions where the gradient is large enough, the
energy profile is flat for αip ∈ [0 : 1], i.e. the energy only acts as a penalty on
values outside the valid range and lets αip take any value between 0 and 1. In
comparison, in uniform regions where∇cp ≈ 0, it encourages αip to be 0 or 1.
These two effects combined favor a higher level of sparsity together with the
softness of the opacity transitions. The effect of our spatially varying sparsity
energy on preserving accurate soft transitions can be seen in Figure 6.7 (c,d).

Putting these terms together, we get the energy function

E = EL + ES + EF + λEC. (6.11)

A unit weight for each term works well except for the sum-to-one term EC
that represents the soft constraint with a higher weight λ = 100. Without the
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6.3. Relaxed Sparsification of Soft Segments

sparsity term ES, E would be a standard least-squares energy function that
can be minimized by solving a linear system. To handle ES, we resort to an
iterative reweighted least-squares solver that estimates a solution by solving
a series of linear systems. We describe the detail of this approach in the rest
of this section.

We name Ni = 5 the number of layers, Np the number of pixels, a the vector
made of all αi’s and â the vector made of all α̂i’s. The dimensionality of a
and â is Nip = NiNp. For clarity, we also introduce the Nip × Nip identity
matrix I . With this notation, we rewrite EF (Eq. 6.7) in matrix form:

EF = (a− â)TI(a− â) (6.12)

We included the redundant I in this equation for a clearer transition when
deriving Eq. 6.17. For rewriting EC (Eq. 6.8), we introduce the Ni×Nip matrix
C made by concatenating Ni identity matrices horizontally, the vector 1i made
of Ni ones, and the vector 1ip made of Nip ones:

EC = (1i − Ca)2 = aTCTCa− aTCT1i − 1Ti Ca+ 1Ti 1i (6.13a)

= aTCTCa− 2aT1ip + Ni, (6.13b)

where we used aTCT1i = 1Ti Ca, CT1i = 1ip, and 1Ti 1i = Ni. We then rewrite
EL:

EL = aTLa (6.14a)

with: L =


L 0 · · · 0
0 L · · · 0
...

... . . . ...
0 0 · · · L

 . (6.14b)

For the sparsity term ES, we introduce the approximate energy:

ẼS = ∑
i,p

uip(αip)
2 + vip(1− αip)

2 (6.15a)

with: uip = |α′ip|γ̃p−2 and vip = |1− α′ip|γ̃p−2, (6.15b)

where α′ is equal to the constrained sparsification result at the first iteration
and to the solution of the previous iteration later. For the matrix reformula-
tion, we use Du the diagonal matrix built with the uip values, and v and Dv
the vector and diagonal matrix built with the vip values:

ẼS = aTDua+ (1ip − a)TDv(1ip − a) (6.16a)

= aT(Du +Dv)a− 2aTv+ 1Tipv, (6.16b)
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where we used Dv1ip = v and vTa = aTv.

To derive a linear system, we sum all the energy terms in their matrix forms
and write that the derivative with respect to a should be zero at a minimum.
This leads to:

(L+Du +Dv + I + λCTC)a = v+ â+ λ1ip (6.17)

We solve this equation using preconditioned conjugate gradient optimiza-
tion [Barrett et al., 1994]. In our experiments, 20 iterations generate results
with satisfactory sparsity. Figure 6.7 illustrates the benefits of our approach.

The size of the linear system is NiNp. While this is large, it remains tractable
because the number of soft layers Ni is set to 5 and it is close to being block-
diagonal, the only coefficients outside the diagonal coming from the sum-
to-one term EC that contributes CTC to the system. Since C is made of 5
juxtaposed Np × Np identity matrices, CTC is made of 25 Np × Np identity
matrices in a 5× 5 layout, i.e. it is very sparse and is easily handled by the
solver.

6.4. Semantic Feature Vectors

We defined our semantic affinity term (§ 6.2.2) with feature vectors f that are
similar for pixels on the same object and dissimilar for pixels on different
objects. Such vectors can be generated using different network architectures
trained for semantic segmentation. In our implementation, we have combined
a semantic segmentation approach with a network for metric learning. It
should be noted that we do not claim the feature generation as a contribution.

We begin by computing a set of per-pixel semantic features for each input
image. In principle, the network generating the features can be easily replaced
to improve the results in parallel to advances in semantic segmentation, or
to change the definition of semantic objects, such as to serve fine-grained or
instance-aware semantic segmentation scenarios.

We train a deep convolutional neural network cascaded with metric learning,
to generate features that are similar if they belong to the same object class, and
distant from each other otherwise. The network outputs per-pixel semantic
features of d = 128 dimensions. For simplicity, we denote a semantic feature
vector f p ∈ RD for each pixel p.

The base network of our feature extractor is based on DeepLab-ResNet-101
[Chen et al., 2017]. The DeepLab model is built on a fully convolutional
variant of ResNet-101 [He et al., 2015a] with atrous convolutions and atrous
spatial pyramid pooling. In the DeepLab-ResNet-101, the res4b22 layer is the

142



6.4. Semantic Feature Vectors

C
o

n
cat.

CNN

res5c

res4b22

res3b3

pool1

input

[512]

[256]

[128]

[4]

[124]

[2048]

[1024]

[512]

[3]

[256]

C
o

n
v1

x1

R
eLu

C
o

n
v1

x1

[1
0

2
4

]

[1
2

8
]

[5
1

2
]

Positive pair

Negative pair

Embedding

U
p

R
eLu

C
o

n
v3

x3

U
p

R
eLu

C
o

n
v3

x3

U
p

R
eLu

C
o

n
v3

x3

U
p

R
eLu

C
o

n
v3

x3

U
p

R
eLu

C
o

n
v3

x3

Figure 6.8.: Network architecture. We extract the feature of intermediate representation
of the base convolution neural network (we use the DeepLap variant of ResNet-101). The
feature are compressed by 3× 3 convolution followed by ReLu and bilinear up-sampling
to have the same resolution with input. The concatenated features are fed to subsequent
1× 1 convolution. On top of this feature, we apply sampling based metric learning in an
end-to-end manner. We denote feature dimension as [#].

most commonly used output as a generic feature, which is 2048 dimensional
at one sixteenth of the original image resolution. Since our purpose is to ex-
tract per-pixel feature with plausible object contours and boundaries, directly
leveraging multi-scale context information is favorable when compared to
using a condensed feature at higher layer such as res5b relu. We modify
the architecture to take features from lower as well as higher-levels into ac-
count. We use the feature concatenation, motivated by [Hariharan et al., 2015;
Bertasius et al., 2015], but we maintain a light representation to avoid large
memory bottlenecks. We branch input, pool1, res3b3, res4b22 and res5c

layers to extract the features, followed by a 3× 3 convolution with ReLu to
compress the intermediate feature dimensions from {3, 256, 512, 1024, 2048}
to {4, 124, 128, 256, 512}, respectively, for a total of 1024 dimensions. We then
upsample them via bilinear upsampling to the input image resolution, fol-
lowed by two 1× 1 convolution layers which gradually reduce 1024 feature
dimension to 512 and then finally to d = 128. The final output of this process
defines our per-pixel semantic features f p. Our architecture is visualized in
Figure 6.8. It is worth pointing out that our architecture is fully convolutional,
allowing it to be applied to inputs of arbitrary resolution. While Hariharan et
al.; Bertasius et al. leverage the pre-trained network without re-training, we
fine-tune the whole network for our purpose.
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To train the whole network, we use L2 distance between pixel features as
the metric to measure the semantic similarity. We will now describe our
loss function on the pixel-level. Given a query vector f p of a pixel p, we
use positive vectors to pull the query towards positive one a and negative
vectors to push to negative one for positive and negative examples from the
query at a time [Hoffer and Ailon, 2015]. Since we work on input image
resolution, to easily utilize more data and be computationally more efficient,
we use N-pair loss [Sohn, 2016] with a slight modification. The N-pair loss
benefits data efficiency by hard negative data-mining style formulation and
cross-entropy style loss to alleviate the slow convergence by loss-balancing
in triplet loss [Hoffer and Ailon, 2015]. While the N-pair loss is defined on an
inner product-based metric, we replace it with L2 distance. Hence, our loss is
defined by:

Lm =
1
|P| ∑

p,q∈P
I[lp = lq] log

((
1 + exp

(
‖ f p − f q‖

))
/ 2
)

+ I[lp 6= lq] log
(

1 + exp
(
−‖ f p − f q‖

)
/ 2
)

,

(6.18)

where P denotes the set of sampled pixels, ‖ · ‖ L2-norm (we divide it by d
for normalization), I[·] the indicator function that returns 1 if the statement is
true and 0 otherwise, and lp the semantic label of pixel p.

In (6.18), for positive pairs, i.e. lp = lq, the corresponding term

log
((

1 + exp
(
‖ f p − f q‖

))
/ 2
)

approaches zero. The conjugate rela-
tion applies to the negative pairs in the second term in (6.18). Since we only
use this cue, whether two pixels belong to the same category or not, specific
object category information is not used during training. Hence, our method
is a class agnostic approach. This fact does not harm our overall goal of
semantic soft segmentation as we aim to create soft segments that cover
semantic objects, rather than classification of the objects in an image. This
also enables us to take into account diversity of semantics and not be limited
to user-selected classes.

We construct the set of sampled pixels P as follows. During training, we feed
a single image as a mini-batch to the network, and we get the features for all
pixels. Given an input image and its corresponding semantic ground-truth
labels, we first randomly sample Pinst number of instances, then for each
instance, we randomly sample Ppix number of pixels within each instance
label mask, so that the number of pixels in each group are balanced. We
minimize (6.18) for the selected samples, and we repeat the sampling 10
times per image, accumulate gradients from them, and update at once. We set
Pinst = 3 and Ppix = 1000. We can easily compute (6.18) in a matrix form by
using D = F1d1d

T + (V1d1d
T)T − 2VVT, where D is the matrix containing
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6.4. Semantic Feature Vectors

Figure 6.9.: We first generate a 128-dimensional feature vector per pixel for a given
image (a). A random projection of 128 dimensions to 3 is shown in (b). We reduce the
dimensionality of the features to 3 using principle component analysis per image (c). Before
the dimensionality reduction, we edge-align the features with guided filter [He et al., 2013]
(d). Image from [Lin et al., 2014].

L2 distances between the feature vectors, 1d is a row-vector of ones, and F
contains the feature vectors of the samples pixels:

F =
[

f 1,1 · · · f 1,Ppix
, f2,1 · · · f 2,Ppix

, · · · f Pinst,Ppix

]T
(6.19)

We trained our network on the training split of COCO-Stuff [Caesar et al.,
2016], which has 182 number of object and stuff categories with instance-
level annotation. We initialized the base DeepLab part with the pretrained
weights on the semantic segmentation task of MS-COCO [Lin et al., 2014]
(80 categories), and the remaining parts with Xavier initialization [He et al.,
2015b]. We set the learning rate to 5× 10−4 for the base part and 5× 10−3

for the rest to compensate for the random initialization. We use stochastic
gradient descent with momentum 0.9, poly-learning rate decay of 0.9 as
suggested by Chen et al. [2017], and weight decay of 5× 10−4. We also use
drop-out with probability 0.5 for 1× 1 convolutions at the two last stages. We
train for 60k iterations and it roughly takes less than one day on an NVIDIA
Titan X Pascal GPU.

Preprocessing

The 128-dimensional feature vectors f p have enough capacity to represent
a large diversity of real-world semantic categories. However, for a given
image, as the number of object categories present in the scene is inherently
limited, the effective dimensionality of the feature vector is much smaller.
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Following this fact, in order to make the graph construction more tractable
and less prone to parameter-tuning, we reduce the dimensionality of the
feature vectors to three using per-image principle component analysis.

One of the major shortcomings of semantic hard segmentation is its inaccuracy
around object boundaries [Bertasius et al., 2016]. This fact is well-reflected
in the generated feature vectors as well, as shown in Figure 6.9. In order
to compute more effective affinities when we are inserting the semantic
information into the graph, we regularize the feature vectors using guided
filtering [He et al., 2013] with the guidance of the input image. This makes
the features to be more consistent with hard boundaries in the image, as
shown in Figure 6.9. We do this filtering for all 128 dimensions prior to
the dimensionality reduction. Finally, we normalize the lower-dimensional
features to be in the range [0, 1] to get the three dimensional feature vectors
f̃ p to be used for affinity computations.

6.5. Experimental Evaluation

Semantic soft segmentation, being at the intersection of semantic segmenta-
tion, natural image matting, and soft segmentation, is challenging to evaluate
numerically. Semantic segmentation datasets provide binary labeling that
is not always pixel-accurate, which makes them ill-suited for benchmarking
semantic soft segmentation. Natural image matting methods are typically
evaluated on dedicated benchmarks [Rhemann et al., 2009] and datasets [Xu
et al., 2017]. These benchmarks are designed to evaluate methods that make
use of a secondary input, called trimap, which defines the expected fore-
ground and background, and an uncertain region. Further, the semantic
aspect of our work is beyond the scope of these benchmarks. As a result,
we resort to qualitative comparisons with related methods and discuss the
characteristic differences between the various approaches.

6.5.1. Implementation Details

We use the sparse eigendecomposition and direct solver available in MATLAB
for our proof-of-concept implementation for the constrained sparsification
stage of our algorithm. This step takes around 3 minutes for a 640× 480
image. The relaxed sparsification step uses the preconditioned conjugate
gradient optimization implementation of MATLAB. Each iteration typically
converges in 50 to 80 iterations and the process takes around 30 seconds. The
run-time of our algorithm grows linearly with the number of pixels.
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6.5. Experimental Evaluation

6.5.2. Spectral Matting and Semantic Segmentation

In Figures 6.10 and 6.11, we show our results together with that of spectral
matting [Levin et al., 2008b] as the most related soft segmentation method to
ours, and two state-of-the-art methods for semantic segmentation: the scene
parsing method by Zhao et al. [2017] (PSPNet) and the instance segmentation
method by He et al. [2017] (Mask R-CNN). Spectral matting generates around
20 soft segments per image, and provides several alternative foreground
mattes by combining the soft segments to maximize an objectness score. These
mattes are not definite results but are provided to the user as options, and
showing all 20 segments would make the comparisons harder to evaluate.
Instead, we apply our soft segment grouping method that uses the semantic
features to the results of spectral matting.

The presented examples show that semantic segmentation methods, while
being successful in recognizing and locating the objects in the image, suffer
from low accuracy around the edges of the objects. While their accuracy is
satisfactory for the task of the semantic segmentation, errors around object
edges are problematic for image editing or compositing applications. On the
other end of the spectrum, spectral matting is able to successfully capture
most of the soft transitions around the objects. However, due to the lack of
semantic information, their segments often cover multiple objects at once,
and the alpha values are often not sparse for any given object. In comparison,
our method captures objects in their entirety or subparts of them without
grouping unrelated objects and achieves a high accuracy at edges, including
soft transitions when appropriate.

It should be noted that it is not uncommon for our method to represent the
same object in multiple segments such as the horse carriage in Figure 6.10 (2)
or the background fence in Figure 6.10 (4). This is mainly due to the preset
number of layers, five, sometimes exceeds the number of meaningful regions
in the image. Some small objects may be missed in the final segments despite
being detected by the semantic features, such the people in the background
in Figure 6.11 (5). This is due to the fact that, especially when the color of the
object is similar to the surroundings, the objects do not appear well-defined
in the eigenvectors and they end up being merged into closeby segments.
Our semantic features are not instance-aware, i.e. the features of two different
objects of the same class are similar. This results in multiple objects being
represented in the same layer such as the cows in Figure 6.10 (1), the people in
Figure 6.10 (5) or the giraffes in Figure 6.11 (3). With instance-aware features,
however, our method would be capable of generating separate soft segments
for different instances of objects.
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Semantic Soft Segmentation

Figure 6.12.: From the input image (a), our method generates the matte shown in (b).
We show that the trimaps with different unknown region widths, generated using the
semantic segments by PSPNet [Zhao et al., 2017] (d) or Mask R-CNN [He et al., 2017]
(e), fail to provide foreground and background regions reliably, which affects the matting
result generated using information-flow matting Chapter 5 negatively. In the bottom
example, PSPNet trimaps are generated by selecting a single class (left) or all the classes
that correspond to the object. We also provide the matting result using a trimap generated
by our result (c) which demonstrates the performance of the matting algorithm given an
accurate trimap. Images from [Lin et al., 2014].

150



6.5. Experimental Evaluation

Figure 6.13.: Our soft segments and the corresponding mattes for the foreground objects.
Note that trimaps usually provided for natural matting were not used to produce these
results. Images from [Xu et al., 2017].

Grayscale images are especially challenging for soft segmentation and image
matting methods with the lack of color cues on which such methods typically
rely. The performance of semantic segmentation methods, on the other
hand, does not degrade substantially when processing a grayscale image.
Figure 6.11 (5) demonstrates that our method can succesfully leverage the
semantic information for soft segmentation of a grayscale image.

6.5.3. Natural Image Matting

In principle, semantic soft segments can be generated by cascading semantic
segmentation and natural image matting. The trimap, defining the foreground,
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Image & feat. Semantic soft segments Soft color segments

Figure 6.14.: Semantic soft segments and soft color segments estimated by our method
presented in Chapter 4 shown together for conceptual comparison. Both methods are fully
automated and only require the input image for soft segmentation. Image from [Bychkovsky
et al., 2011].

background, and soft transition regions, can be generated from the semantic
hard segments to be fed to the natural matting method. Shen et al. [2016] and
Qin et al. [2017] use similar approaches for class-specific problems. We show
two examples of such scenario in Figure 6.12 to demonstrate the shortcomings
of this approach by generating trimaps using Mask R-CNN and PSPNet re-
sults and estimating the mattes using our natural matting method presented
in Chapter 5. A strong assumption made by natural image matting methods
is that the provided trimap is correct, i.e. the defined foreground and back-
ground regions are used as hard constraints to guide the methods in modeling
the layer colors. Inaccuracies in the estimated semantic boundaries, however,
often fails to provide reliable trimaps even with a large unknown-region
width. This results in severe artifacts in the matting results, as highlighted
in the figure. We show that the natural matting method succeeds given an
accurate trimap, generated using our results for demonstration.

While general natural image matting is beyond the scope of our method,
Figure 6.13 shows several examples where our method is able to generate
satisfactory results on images from natural image matting datasets without
requiring a trimap.

6.5.4. Soft Color Segmentation

Soft color segmentation, as discussed in detail in Chapter 4, decomposes the
input image into soft layers of homogeneous colors and have been shown
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to be useful for image editing and recoloring applications. As a conceptual
comparison between semantic soft segments and soft color segments, Fig-
ure 6.14 shows our semantic soft segments with soft color segments. For a
more convenient qualitative comparison, we estimated the layer colors for
our soft segments using the closed-form color estimation method [Levin et
al., 2008a].

It is immediately visible that the content of soft color segments extend be-
yond the object boundaries, while our results show semantically meaningful
objects in the same segment, regardless of their color content. As these repre-
sentations are orthogonal to each other, they can be used in orchestration to
generate targeted recoloring results.

6.5.5. Using Semantic Soft Segments for Image Editing

We demonstrate several use cases of our soft segments for targeted image
editing and compositing in Figure 6.15. Figure 6.15(1,3,4,7) show compositing
results where we estimated the layer colors for our segments using closed-
form layer color estimation [Levin et al., 2008a]. Notice the natural soft
transitions between the selected foreground layers and the novel background.
The soft segments can also be used for targeted image edits where they are
used to define masks for specific adjustment layers such as adding motion
blur to the train in (2), color grading the people and the backgrounds sepa-
rately in (5,6) and separate stylization of the hot-air balloon, sky, terrain and
the person in (8). While these edits can be done via user-drawn masks or
natural matting algorithms, our representation provides a convenient inter-
mediate image representation to make the targeted edits effortless for the
artist.

6.6. Limitations

While we are able to generate accurate soft segmentations of images, in
our prototype implementation our solvers are not optimized for speed. As
a result, our runtime for a 640× 480 image lies between 3 and 4 minutes.
The efficiency of our method can be optimized in several ways, such as
multi-scale solvers, but an efficient implementation of linear solvers and
eigendecomposition lies beyond the scope of our study here.

In the constrained sparsification step, we generate around 15-25 segments,
which are then grouped using the feature vectors into 5. The number of
layers was set via empirical observations, and in some cases, an object may
be divided into several layers. While this does not affect the applicability of
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Figure 6.15.: Semantic soft segments can be used for compositing tasks after layer color
estimation.
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Figure 6.16.: Semantic soft segments can be used as masks for targeted image editing
tasks.
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Figure 6.17.: Two failure cases are shown. Top example: In case of large regions covering
different objects with very similar colors (a) our feature vectors (b) and segments before
grouping (c) fail to identify the separate objects in the image and result in inaccurate
segmentation (d). Bottom example: When our feature vectors fail to represent the objects,
even if when the initial layers are able to generate accurate soft transitions (c) the grouping
of the soft segments (d) may fail. Images from [Rhemann et al., 2009].

our method as combining those layers in editing is trivial, more sophisticated
ways of grouping the layers such as through recognition and classification
can be devised.

Our method does not generate separate layers for different instances of
the same class of objects. This is due to our feature vectors, which does
not provide instance-aware semantic information. Our soft segmentation
formulation, however, is agnostic to the semantic features. Hence, a more
advanced feature generator would make it possible to generate instance-
level soft segmentation results when combined with a better-fitting segment-
grouping strategy.

We have shown several results from natural matting datasets. However, it
should be noted that we do not aim to solve the natural matting problem
in general. Natural matting is a mature field with many specific challenges,
such as generating accurate mattes around very similarly-colored foreground
and background regions, and state-of-the-art methods depend on the color
distributions of the two regions to increase performance around such areas.
As Figure 6.17 demonstrates, our method may fail at the initial constrained
sparsification step when the object colors are very similar, or the grouping
of soft segments may fail due to unreliable semantic feature vectors around
large transition regions.
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C H A P T E R 7
Conclusion

Soft segmentation is an essential part of realistic image editing and com-
positing. Accurate estimation of soft transitions between image regions and
the underlying layer colors around these soft transitions allows applying
complex color and scene changes effortlessly. In this thesis, we approached
the soft segmentation problem from two complementary properties of a pho-
tograph. In Part I, we focused on analyzing the photograph in terms of color
by representing the image as a mixture of a small set of dominant scene colors.
We addressed a widely utilized industrial process of green-screen keying in
Chapter 3 where the color-based analysis made a great fit. We then extended
the core novelty of this approach, color unmixing, to the analysis of natural
scenes in Chapter 4, which opens up numerous image editing possibilities.
Our methodology shifted to graph-based representations of images for soft
segmentation of objects in Part II. We introduced an affinity-based approach
to the widely studied natural image matting problem. Finally, we studied
a novel segmentation paradigm, semantic soft segmentation, that fully au-
tomatically generates soft segments for objects in an image by combining
spectral segmentation and machine learning.

From professional movie post-production to amateur video editing, isolating
the foreground in a scene such as the actors to replace or edit the background
is an essential part of the pipeline. However, this task referred to as keying
or matting is heavily expertise-driven and time-consuming. The difficulty
of achieving production-quality results drives many to one popular setup:
green-screens, shooting a scene in an environment where the background is
controlled to have a solid and distinct color. Despite its common use, this
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unnatural scene environment is not favored by many movie professionals
and studios spend a lot of resources to be able to freely edit the background
contents of natural scenes. We proposed novel approaches to both controlled
and uncontrolled scenarios, where we aim to decrease the manual work that
goes into the keying process while increasing the final quality.

Common commercial tools for green-screen keying typically makes use of
the background color and relies on the compositing artist to refine the results.
In Chapter 3, we introduced a keying pipeline that relies on our novel color
unmixing formulation. Color unmixing is a per-pixel energy formulation
which represents a pixel color as a mixture of the main scene colors. A
two-step simplistic interaction procedure is utilized to effectively use color
unmixing for green-screen keying, where the user is expected to identify the
main colors in a scene and where they approximately appear. The heavy
lifting, i.e. making sure the soft transitions well represent the foreground
object, is then done by our energy formulation. We showed that the proposed
technique substantially decreases the interaction time required for achieving
production-ready keying quality when compared to commercial keying tools.
Color unmixing shows favorable performance around challenging regions
such as motion blur and is able to reliably extract the foreground even if
the foreground colors appear similar to the background due to the extensive
parametric representation of the scene colors.

We also provided a study of natural image matting that covers related prob-
lems such as matte refinement and layer color extraction in Chapter 5. Natural
matting is only recently gaining popularity in professional movie production
as new approaches are beginning to provide the matting quality necessary for
production, although it has been studied in academia for two decades. Rather
than relying on the background color and user expertise, commonly used
interaction in natural matting is a coarse segmentation of foreground and
background before the matte computation. We proposed an affinity-based
approach to this problem, where we define inter-pixel connections to strategi-
cally target challenging foreground structures. The design of the underlying
graph structure is conceptualized by information flows, modeling how the
information provided by the user can be effectively distributed into the rest
of the image. Our state-of-the-art matting results are computed with an ele-
gant closed-form expression. Our design approach can be easily extended to
problems that require propagation of sparse information to the whole image.
We demonstrated this by providing another approach, this time targeting the
computation of unmixed layer colors which are necessary for compositing
together with the estimated mattes. We demonstrated the effectiveness of the
proposed graph formulation further through spectral analysis and additional
discussions.
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While the interactive soft segmentation methods have wide use with tar-
geted application scenarios, soft segmentation in general have many uses
in common image editing tasks. Automatic soft segmentation, as a result,
provides convenient intermediate representations of images that can be freely
used even by an inexperienced user to perform a wide variety of image
manipulation operations with very little effort. Although both interactive
and automatic soft segmentation approaches aim to estimate soft transitions
reliably, the existance of a user-defined foreground region greatly changes
the theoretical approaches one should take in two scenarios. Keying and mat-
ting methods make heavy use of color characteristics of the foreground and
background to reason about the soft transitions between them. In contrast,
automatic soft segmentation approaches need to estimate the soft transitions
and reason about which soft transitions are important or meaningful for the
target segmentation scheme in the same formulation. In both parts of this the-
sis, we used the formulations and strategies we developed for interactive soft
segmentation as a starting point to introduce color-based and object-based
automatic soft segmentation methods.

Soft color segmentation is the estimation of multiple layers of homogeneous
colors that represent each pixel of an image as a mixture of a small set
of scene colors called color model. Chapter 4 describes a fully automatic
pipeline for soft color segmentation that determines the number of layers,
the color model itself and the corresponding layers with opacities. The
fundamental component of our pipeline is an extended version of our color
unmixing formulation. In the initial step, we determine a color model for
the input photograph through a greedy scheme. The compactness of our
color model is ensured by the use of color unmixing such the colors that
can be well represented as a mixture of the existing entries in the color
model are not considered as additional entries. By making sure that the
optimized color unmixing energy is low for every pixel, we guarantee the
color homogeneity in the final layers. Using the estimated color model,
we formulated a three-step soft color segmentation formulation that can
be implemented with parallelizability and scalability in mind. We showed
that, by breaking this large global formulation into per-pixel sub-problems,
high-quality segments can be estimated very efficiently when compared to
state-of-the-art in the literature. Our extensive theoretical and experimental
analysis shows that ours is the first soft color segmentation approach that can
be effectively used in a wide range of realistic image editing scenarios.

We focused on the use of low-level features to formulate our interactive tech-
niques as well as automatic soft color segmentation. In order to estimate
a set of soft segments that correspond to objects in the image without any
user input, we require a high-level sense of objectness in our formulation. By
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merging the mathematical modeling of soft segmentation through spectral
analysis and semantic segmentation through machine learning techniques,
we studied a novel soft segmentation problem, semantic soft segmentation, in
Chapter 6. The information on objectness comes from a deep neural network
that is trained specifically to fit our graph-based soft segmentation formu-
lation. We merged this high-level information with low-level information
on local soft transitions and nonlocal color similarity in a single graph, fol-
lowing our information flow based design mechanism. We showed that this
proposed graph reveals the objects with the soft transitions between them in
the eigenvectors of the corresponding Laplacian matrix. We also proposed
a matte sparsification approach using the same graph structure, that can
remove spurious alpha values in multiple mattes together while keeping
the meaningful soft transitions intact. We showed through many examples
that the semantic soft segments can be used effectively for compositing and
targeted image editing tasks.

7.1. Future directions

Joint illumination and color analysis. We based our color analysis in Part I
solely on how the pixels appear in the final photograph. Although we showed
many useful applications using color-based decomposition, the analysis can
be extended to reflect how the observed colors were formed physically. The
appearance of colors in photographs comes from the illumination color and
direction in the scene, as well as the albedo of the object reflecting the light, in
addition to the camera parameters such as the white balance. Our color-based
decomposition gets affected by the illumination variations and shading as a
result. A promising future direction is to integrate the color variations coming
from illumination and albedo separately into the color unmixing formulation.
Matte sparsity and representing the scene with a small set of colors, two
assumptions we extensively make use of in soft color segmentation, apply
better to the albedo. This can be combined with a smoothness assumption on
shading for a joint illumination- and color-based decomposition.

Merging high-level and low-level features. We formulated an object-
based soft segmentation approach without any user input by utilizing neural
networks in a graph-based analysis. Our use of high-level features from a
neural network in the same formulation as low-level features from the image
texture represents an alternative use case for deep learning, where it was used
to enrich our mathematical modeling of image representations. This way,
we were able to study semantic soft segmentation which had been beyond
the possible applications of deep learning because of limited and hard-to-
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acquire ground truth data. This line of research will open up many new
application scenarios with data-driven approaches enriching well-established
mathematical models of image formation. Specifically for soft segmentation,
the high-level properties of the final layers can be enriched with information
on depth or material properties by extending our formulation.

Learning targeted affinity definitions. We showed in Chapter 5 that a
carefully designed graph can represent complex foreground structures well
for image matting. We relied on nonlocal connections between pixels when
constructing our graph. The selection procedure of these nonlocal neighbors
is admittedly simple, based on k nearest neighbors searches defined over
variations of feature vectors comprised of colors and spatial coordinates of
pixels. The demonstrated performance and generalizability of our empirically
designed formulation show the potential of using targeted information flow
definitions. The information propagation on the image space is useful for an
extended set of applications in computer vision in addition to image editing
and matting, such as refining depth maps that are typically inaccurate around
edges between objects. With further research, this potential can be realized
more fully by learning the best possible connections for the linear system
formulation from large-scale data for the target application domain.

Efficiency and video. We focused specifically of soft segmentation of still
images rather than videos. One reason behind this is the complexity of this
problem even for a still image due to the expectation of high accuracy for
realistic image editing. Applying our algorithm for green-screen keying for
image sequences is able to give temporally stable results thanks to the sta-
bility of color unmixing in the presence of a constrained background. Soft
color segmentation can be extended to video with relatively little effort that
includes the estimation of a temporally evolving color model that accounts
for colors that disappear or appear with the changing scene. Extending our
graph-based formulation in Part II to video presents a more challenging re-
search direction. Ensuring temporal stability in natural matting and semantic
soft segmentation requires inter-frame connections and hence a larger linear
system. Research towards more sparse and compact graph representations for
video as well as faster eigensolvers will open up the application of automatic
high-quality compositing for videos without a studio environment.
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[Aksoy et al., 2016] Yağız Aksoy, Tunç Ozan Aydın, Marc Pollefeys, and Aljoša
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rizio Nitti, Tunç Ozan Aydın, and Bob Sumner. AR museum: A mobile aug-
mented reality application for interactive painting recoloring. In International
Conference on Game and Entertainment Technologies, 2017.

[Schmidt, 2007] Mark Schmidt. UGM: A Matlab toolbox for probabilistic undi-
rected graphical models. http://www.cs.ubc.ca/~schmidtm/Software/UGM.

html, 2007.

[Shahrian and Rajan, 2012] E. Shahrian and D. Rajan. Weighted color and texture
sample selection for image matting. In Proc. CVPR, 2012.

[Shahrian et al., 2013] E. Shahrian, D. Rajan, B. Price, and S. Cohen. Improving
image matting using comprehensive sampling sets. In Proc. CVPR, 2013.

[Shen et al., 2016] Xiaoyong Shen, Xin Tao, Hongyun Gao, Chao Zhou, and Jiaya
Jia. Deep automatic portrait matting. In Proc. ECCV, 2016.

[Singaraju and Vidal, 2011] D. Singaraju and R. Vidal. Estimation of alpha mattes

167

http://www.cs.ubc.ca/~schmidtm/Software/UGM.html
http://www.cs.ubc.ca/~schmidtm/Software/UGM.html


Bibliography

for multiple image layers. IEEE Trans. Pattern Anal. Mach. Intell., 33(7):1295–1309,
2011.

[Smith and Blinn, 1996] Alvy Ray Smith and James F. Blinn. Blue screen matting.
ACM Trans. Graph., pages 259–268, 1996.

[Sohn, 2016] Kihyuk Sohn. Improved deep metric learning with multi-class N-pair
loss objective. In Proc. NIPS, 2016.

[Tai et al., 2005] Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. Local color transfer
via probabilistic segmentation by expectation-maximization. In Proc. CVPR,
2005.

[Tai et al., 2007] Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. Soft color segmenta-
tion and its applications. IEEE Trans. Pattern Anal. Mach. Intell., 29(9):1520–1537,
2007.

[Tan et al., 2016] Jianchao Tan, Jyh-Ming Lien, and Yotam Gingold. Decomposing
images into layers via RGB-space geometry. ACM Trans. Graph., 36(1):7:1–7:14,
2016.
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