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ABSTRACT
Most of the mobile applications require efficient and precise compu-
tation of the device pose, and almost every mobile device has inertial
sensors already equipped together with a camera. This fact makes
sensor fusion quite attractive for increasing efficiency during pose
tracking. However, the state-of-the-art fusion algorithms have a ma-
jor shortcoming: lack of well-defined uncertainty introduced to the
system during the prediction stage of the fusion filters. Such a draw-
back results in determining covariances heuristically, and hence, re-
quirement for data-dependent tuning to achieve high performance
or even convergence of these filters. In this paper, we propose an
inertially-aided visual odometry system that requires neither heuris-
tics nor parameter tuning; computation of the required uncertainties
on all the estimated variables are obtained after minimum number
of assumptions. Moreover, the proposed system simultaneously es-
timates the metric scale of the pose computed from a monocular
image stream. The experimental results indicate that the proposed
scale estimation outperforms the state-of-the-art methods, whereas
the pose estimation step yields quite acceptable results in real-time
on resource constrained systems.

Index Terms— Sensor Fusion, Inertial Sensors, Visual Odome-
try, Pose Tracking, Mobile Vision

1. INTRODUCTION

Most commercial off-the-shelf (COTS) mobile devices are equipped
with cameras as well as additional sensors, such as gyroscopes or
accelerometers. These sensors carry important information about
the pose of these devices. Since the noise on the inertial sensors and
the noise on the visual pose estimation are independent, utilization
of the two mediums together is expected to enhance the performance
of pose tracking.

Fusion of inertial and visual pose measurements are usually con-
ducted using Kalman filters [1]-[8]. Current fusion systems fail to
provide a solid definition on how much additional uncertainty should
be introduced to the filter for uncertainty propagation. The amount
of uncertainty leaked into the state vector during the prediction stage
of the filter represents how much the system trusts the prediction and
has a dramatic effect on the filter performance. If the introduced un-
certainty is inconsistent with the real system, the filter might even
diverge. This case requires a cumbersome tuning process before
achieving acceptable performance under different conditions.

We present a novel light-weight filter for odometry. Inertial
measurements act as the motion model during the prediction stage.
The amount of uncertainty introduced to the system in the prediction
stage is determined by uncertainty on inertial measurements, mak-
ing uncertainty tuning needless for the proposed algorithm. We also
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Fig. 1: Initialization and 3 frames at 10th, 20th & 30th seconds of
’Office’ scene. Cyan and green represent tracked and reprojected
points, respectively. Best viewed in the digital version.

present theoretical computation of uncertainty on every estimated
variable.

1.1. Related Work

In the sensor fusion literature, visual information is generally used to
prevent inertial navigation from diverging due to the bias. The most
commonly used tool is indirect Kalman filter [1, 2] in which the state
consists of errors on navigation input together with optional inertial
sensor biases. In [3], the error state is defined with errors on both in-
ertial and visual sensors. Tardif et al. [4] use delayed-state Kalman
filter, where the prediction step of the Kalman filter is repeated with
each gyroscope measurement and the state is updated once new vi-
sual measurement comes. Strelow and Singh [5] and You and Neu-
mann [9] use iterated Kalman filter, where the state is updated with
either of inertial or visual measurements as soon as they arrive. Nutzi
et al. [6] estimate the metric scale of the monocular visual pose mea-
surements. Tanskanen et al. [7] utilizes an accelerometer for scale
estimation only when there is significant acceleration together with
an outlier detection scheme in order to deal with highly noisy sen-
sor readings on a mobile device. A visually aided inertial navigation
algorithm that is designed for resource constrained systems is pro-
posed by Li and Mourikis [8] based on [10]. Authors report 5 Hz
operation on a COTS mobile device.

Strasdat et al. [11] compare the advantages of filter- and
optimisation-based approaches in terms of accuracy and computa-
tional cost and conclude that although optimisation-based methods
are shown to be more accurate, filter-based systems should be more
advantageous for a resource constrained system [11]. Since Kalman



filters are quite powerful at fusing different information mediums
by weighing them ideally based on their covariances, the ideal se-
lection for a mobile system that utilizes both inertial and visual
measurements appears to be a filter-based solution.

2. ALGORITHM OVERVIEW

We construct a Kalman filter which takes visual and inertial pose
measurements as inputs. The state of the filter consists of the camera
pose and the scaling between monocular pose estimation and metric
units.

Due to the highly noisy characteristics of inertial sensors on mo-
bile devices [12], unlike many inertial-visual navigation algorithms
[2, 6, 8, 10], we treat inertial measurements as the secondary source
of information and utilize them only for quite short time intervals
(Sec. 3.1).

We utilize a linear (gravity-free) accelerometer and a gyroscope.
The metric translational velocity is computed from accelerometer
readings and tracked points [13, 14] and translation between two
consecutive frames are computed using that velocity. Rotation be-
tween consecutive frames is computed from gyroscope readings.
The translation and the rotation are fed to the Kalman filter during
the prediction stage. Hence, inertially estimated change in pose acts
as the motion model for the prediction stage.

The most important advantage of using inertial estimates at the
prediction stage is that the uncertainty on the inertially estimated
change in pose is known. The covariance of the inertial estimate is
fed to the filter as the scale propagation uncertainty.

Visual pose measurements are utilized in the correction stage
of the filter. Measurements are generated by tracking a number of
points with 3D correspondences (Sec. 3.2). The initial map is gen-
erated by swiping the camera in the horizontal direction and triangu-
lating the 2D points in two poses to initialize their 3D positions. The
horizontal distance between the two poses used in triangulation is de-
termined using the accelerometer. The error on this distance causes
a scaling between visually estimated translation of the camera and
its actual metric translation. This unknown scale is also included in
the filter state.

3. FORMULATION

In order to represent the attitude of the camera, we use quaternions
in such a way that a 4-vector corresponds to a rotation quaternion:

~q =
[
qs qa qb qc

]T ⇒ q̃ = qs + qai+ qbj + qck (1)

We define the visual measurement ~φ (Sec. 3.2) as a 7-vector,
consisting of the position and the attitude of the camera. Structure of
the inertial measurement vector ~υ (Sec. 3.1) is identical except for
that ~υ represents relative pose change between two time instances
rather than the pose itself. We set the world coordinate system as
the initial pose of the camera. On the utilized mobile device, inertial
sensor axes are defined to be identical to those of the camera.

3.1. Inertial Measurements

Generally, inertial sensors provide data at much higher rates than
cameras [12]. On the contrary, the sensors on the mobile device that
is utilized during the experiments (ASUS TF201) have a sampling
rate of only 48 Hz, very close to the video rate at 30 Hz. Hence,
in order to use the two mediums together effectively, inertial signals
are resampled at the video rate.

We have inertial measurements representing the average trans-
lational acceleration and rotational velocity between two visual

frames. We use the inertial measurements to compute relative pose
between two frames.

Due to highly varying bias on the accelerometer, tracking the
velocity using the acceleration values is not desired. We adopt the
formulation in [13] and present a translational velocity estimator for
our case in [14] which combines information from a tracked point
and inertial measurements. We use the gyroscope reading ~ω and
sampling interval t∆ to construct a rotation quaternion vector.

Uncertainty on Inertial Measurements
Assuming cross-covariance of the velocity and the acceleration

is negligible, the covariance matrix of ~τυ is computed as:

Tυ = V t2∆ +
1

4
At4∆ (2)

A, covariance of the accelerometer readings, is usually available
from the sensor datasheet or can be determined as described in [12].
V , covariance of the velocity, is formulized in [14]. The covariance
matrix Qυ of ~qυ , is obtained by mapping the covariance of gyro-
scope readings, which can be again determined as described in [12].

Assuming that the cross-covariance between the rotation and the
translation is negligible, the covariance matrix of the inertial mea-
surement vector ~υ becomes:

Υ =

[
Tυ 0
0 Qυ

]
(3)

3.2. Visual Measurements

We detect the keypoints on images by using ORB [15] and select
the ones with highest Harris scores [16]. Selecting the points with
the high Harris scores gives us robust keypoints for Kanade-Lucas-
Tomasi (KLT) tracker [17]. 2D tracking is performed by using KLT
and lost point detection is enhanced by Template Inverse Matching
technique [18], in which for each frame, each tracked point is back-
tracked to the previous frame and if the resultant position is not con-
sistent, the point is stated to be lost.

In the proposed system, the user is urged to move the camera
horizontally for a very short period of time for initialization. The
baseline distance is estimated by integrating accelerometer readings
in the horizontal direction. The reason for the restricted motion is to
trap the error coming from inertial sensors in only one dimension.
If we assume that the non-horizontal motion is negligible, the trian-
gulation of the tracked 2D points results in 3D points with slightly
scaled coordinates due to uncertain baseline distance estimate.

The map size is kept constant by triangulating new points, if
there are lost points in the map. For the triangulation of new points, if
there are n points in the map, n/2 additional points are also tracked.
Assuming the camera is calibrated internally, we compute the pose
using EPnP algorithm [19] from initially estimate 3D positions and
tracked 2D positions.

Uncertainty on Visual Measurements
In order to find the covariance matrix of the computed pose, we

should find the uncertainties on 2D point locations. For this pur-
pose, we utilize the method proposed in [20]. Then, to compute the
covariance Φ of the estimated visual pose ~φ from the uncertainty on
tracked point positions, the method presented in [21] is adopted.

Computation of the Scaling between Visually Estimated
Translation and Metric Units and Its Variance

Assuming that the initial velocity is zero, we can write the es-
timated baseline τ̂x,ni = τ̂ni during the initialization of the map
as the sum of displacements during each interval between inertial
readings:



τ̂ni =

ki∑
k=0

τ̂k =

ki∑
k=0

vkts +
1

2
αkt

2
s (4)

where ki represents the index of the last inertial measurement
during initialization and ts represents the time between two inertial
readings. By writing the horizontal velocity vk in terms of the pre-
ceding accelerometer readings αj , we get:

τk =

k−1∑
j=0

(αjts)ts +
1

2
αkt

2
s =

(
k−1∑
j=0

αj +
1

2
αk

)
t2s (5)

Plugging the above equation into (4) results in:

τ̂ni =

(
ki∑
k=0

k−1∑
j=0

αj +
1

2

ki∑
k=0

αk

)
t2s =

ki∑
k=0

(ki+0.5−k)αkt
2
s (6)

In order to compute the variance of the translation, let us rep-
resent the accelerometer readings in the horizontal direction αk by
the sum of the actual acceleration and the zero mean Gaussian addi-
tional white noise on the sensor with variance A(1,1) [12] such that
αk = ak + ek. Then, E {αk} = ak and σ2

αk
= σ2

ek . The mean
value of τ̂ni is computed as:

E {τ̂ni} = E

{
ki∑
k=0

(ki + 0.5− k)αkt
2
s

}
(7a)

=

ki∑
k=0

E {αk} (ki + 0.5− k)t2s = τni (7b)

where τni is the actual baseline distance. After algebraic manip-
ulations, the variance of τ̂ni becomes:

σ2
τ̂ni

= σ2
ek t

4
s

(ki + 1)(4k2
i + 8ki + 3)

12
(8)

The scale, its mean and covariance is:

λ ,
‖~τ‖ measured visually

metric ‖~τ‖ =
τ̂ni

τni

(9a)

E {λ} = E

{
τ̂ni

τni

}
=
E {τ̂ni}
τni

= 1 (9b)

σ2
λ = E

{
(λ− 1)2} =

E
{

(τ̂ni − τni)
2
}

τni
2

= σ2
τ̂ni
/τ2
ni

(9c)

3.3. Proposed Filter

The state vector of the proposed Kalman filter, ~µ, is an 8-vector con-
taining the pose and the metric scale, ~µn = [~τTn λ ~qTn ]T . The con-
structed Kalman filter is given as follows:

~̂µn = g(~µn−1, ~υn) (10a)

M̂n = Jg(~µn−1)Mn−1J
T
g (~µn−1) + Jg(~υn)ΥnJ

T
g (~υn) (10b)

κn = M̂nC
T (CM̂nC

T + Φn)−1 (10c)

~µn = ~̂µn + κn(~φn − C~̂µn) (10d)

Mn = (I8×8 − κnC)M̂n (10e)

Here, ~µn and Mn represent the state vector and its covariance, ~̂µn
and M̂n represent the predicted next state and its covariance, ~υn
and Υn represent the inertial measurement vector and its covariance,
g(~µn−1, ~υn) represents the prediction function, ~φn and Φn repre-
sent the visual measurement vector and its covariance, C represents

the measurement model matrix and κn represents the Kalman gain.
The initial state vector is set using the first visual pose measurement
and unity scale.

The Prediction Stage
The prediction stage consists of (10a) and (10b). The state tran-

sition uncertainty is set as the covariance of the inertial measure-
ment, Υ. The nonlinear function ~̂µn = g(~µn−1, ~υ) is defined as:

~̂τn = q̃υ,nτ̃n−1q̃
∗
υ,n + λn−1~τυ,n

λ̂n = λn−1 ~̂qn = q̃υ,nq̃n−1

Jg(~µn−1) and Jg(~υn) in (10b) represent the Jacobians of
g(~µn−1, ~υ) with respect to the previous state and the inertial mea-
surement vector, respectively.

The Correction Stage
(10c) - (10e) define the correction stage. While the prediction

stage is nonlinear, the correction stage is linear. The measurement
model is defined as:

~φ = C~µ =

[
I3×3 03×1 03×4

04×3 04×1 I4×4

]
~µ (12)

Magnitude of the rotation is kept at unity by scaling the quater-
nion part of the state vector, while updating the covariance matrix
accordingly.

4. EXPERIMENTS

We utilize image sequences with 640x480 spatial and 30 Hz tem-
poral resolution. The gyroscope and the accelerometer sensors on
ASUS TF201 provide data at 48 Hz. Gravity-free accelerometer is
obtained using the gravity sensor of Sensors API of Android OS.
The ground truth is generated by selecting corners with known 3D
positions from high definition versions of the image sequences inter-
actively.

4.1. Visual Pose Estimation

Figure 2 shows a typical example of performance difference between
different map sizes. One can observe that although the performances
are similar in the beginning, as the tracked points and the map start
to get corrupted, maps with smaller sizes start to degenerate the pose
estimation. We observed that the quality of 3D points affects the the
error performance of the translation and rotation equally.

4.2. Scale Estimation

We compare the proposed scale estimation method against the one
by Nutzi et al. [6]. Their algorithm requires tuning for uncertainty
propagation. In Figure 3, our results of scale estimation are shown

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Po
si

tio
n 

Er
ro

r 
(m

)

Map size: 20
Map size: 12
Map size: 6

 0

 0.2

 0.4

 0.6

 50  100  150  200  250  300

At
tit

ud
e 

Er
ro

r 
(r

ad
)

Frames

Fig. 2: Visual pose estimation performances with various map sizes



together with a regular and tuned version of [6]. Observe that for
the complex motion case, before tuning, their algorithm [6] diverges
instantly; while after tuning, it fails to converge to a value and then
diverges to negative infinity. The proposed algorithm, on the other
hand, converges to a relatively incorrect value. This is due to the
fact that the scale is observable only through the translation compo-
nent of the estimated pose. However, if there is dominant translation
within the camera motion, the performance of the proposed algo-
rithm significantly increases. When the scale is more observable, the
scale estimate converges to a value close to the true scale in under
only around 3 seconds.

Figure 3 also shows the variance on our scale estimates. Since
no uncertainty is introduced to the scale in the prediction stage, the
variance always decreases, and the estimated scale gets fixed. Hence,
dominant translation is only required during the first several seconds
of the system operation for an accurate scale estimate.
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Fig. 3: Estimated scale in a video with complex motion (top) and in
one with dominantly translational motion (bottom)
4.3. Filter Based Odometry

We compare the proposed algorithm against two alternative formula-
tions. The first one is the proposed Kalman filter without an inertial
input. In this case, the prediction is the previous state itself. The
second one uses iterated Kalman filter [5]. Similar to [5], the filter
is iterated with each inertial and visual input. Amount of prediction
uncertainty is tuned empirically for both methods.

Average improvement over visual pose measurement by the pro-
posed algorithm is 3% for translation and rotation. Iterated Kalman
filter formulation increases the error by 25% for translation and 49%
for rotation, while filtering without inertial input results in error in-
crease by 4% for translation and 11% for rotation on average. Fig-
ure 4 shows comparisons of algorithm performances. Usually, it-
erated Kalman filter formulation performs poorly due to the highly
erroneous inertial measurements. Apart from operating without any
parameter tuning, an important advantage of using inertial measure-
ments during prediction is suppressing high visual estimation error
peak as illustrated in the second graph in Figure 4.

We reach real-time operation at 30 Hz on ASUS TF201 tablet
device with map size being six points.

5. CONCLUSION
Kalman filter is a powerful yet delicate tool. Uncertainty introduced
in the prediction stage of the filter affects the performance dramati-
cally. In this paper, we proposed a filter-based sensor fusion system
that uses the uncertainty on the inertial measurements as the predic-
tion uncertainty and runs without any parameter tuning. By treat-
ing inertial sensors as a secondary source, we showed that even the
highly noisy mobile inertial sensors can be successfully utilized in
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Fig. 4: Performance of the proposed filter when compared to the
visual pose estimation, filtering without inertial input and iterated
Kalman filtering for several sequences

an odometry system. Our scale estimation outperforms scale-of-the-
art while our pose estimation gives acceptable results at a very high
rate even on a COTS mobile device.
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