
UNCERTAINTY MODELING FOR EFFICIENT VISUAL ODOMETRY VIA INERTIAL
SENSORS ON MOBILE DEVICES

SUPPLEMENTARY MATERIAL

COMPUTATION OF METRIC TRANSLATIONAL VELOCITY AND CORRESPONDING
UNCERTAINTY USING INERTIAL SENSORS AND VISUAL TRACKING

Yağız Aksoy∗ and A. Aydın Alatan

Dept. of Electrical and Electronics Engineering, Middle East Technical University, 06800, Ankara

ABSTRACT

We formulate estimation of metric velocity using a visually tracked point, accelerometer reading and gyroscope readings that
are in sync with video rate, in parallel with [1]. Uncertainty on the estimated velocity is also derived via the uncertainties on
the utilized measurements.

1. INTRODUCTION

In order to compute the change in position between two time instances, in addition to the accelerometer readings, translational
velocity of the camera is needed. In this document, we present a method to estimate the instantaneous velocity.

Kneip et al. [1] formulated the computation of metric translational velocity from accelerometer measurements and a visually
tracked point in three frames. In this report, we adopt their formulation with several small differences in order to derive
the equation relating camera velocity with inertial and visual measurements. Following the formulation, computation of the
covariance matrix of the estimated velocity is presented.

In [1], the sample rate of the accelerometer is assumed to be much greater than frame rate of the image stream and a
recursive formulation is developed for integration of accelerometer readings. Since two rates are similar in the utilized inertial
measurement units on ASUS TF201 tablet device (48 Hz accelerometer and 30 Hz image stream), for a reasonable formulation,
we assume that the inertial readings are taken simultaneously with each image and resample inertial readings at the video rate.

2. TRANSLATIONAL VELOCITY ESTIMATION

As it can be seen in Figure 1, three poses of the camera, ~φn, ~φn−1 and ~φn−2 at time instants tn, tn−1 and tn−2, are considered.
Time intervals are defined as t1 = tn − tn−1, t2 = tn − tn−2 and t3 = tn−1 − tn−2. Accelerometer readings ~αn−1 and ~αn−2
are retrieved at tn−1 and tn−2. Instantaneous velocities are denoted as ~vn, ~vn−1 and ~vn−2. Accelerations and velocities are
represented in the coordinate frames corresponding to the poses at their time instants. The rotation from ~φn−1 to ~φn is defined
as q̃1, from ~φn−2 to ~φn as q̃2 and from ~φn−2 to ~φn−1 as q̃3, i.e. q̃2 = q̃1q̃3, where˜represents quaternion representation. These
rotation quaternions are assumed to be known and can be estimated from visual measurements or gyroscope readings. The
translation from ~φn to ~φn−1 is defined as ~τ1, from ~φn to ~φn−2 as ~τ2 and from ~φn−1 to ~φn−2 as ~τ3. Translations are defined in
the latest coordinate frame.

We use the vector and quaternion representation of the variables interchangeably such that:

∗Yağız Aksoy is currently affiliated with Department of Computer Science, ETH Zurich and Disney Research Zurich.
This work was funded by Argela under grant number 4893-01.

~τ1, q̃1, t1

~τ2, q̃2, t2

~τ3, q̃3, t3

~φn−2

~φn−1

~φn

Fig. 1: Definition of three poses and relative transformations

α1

α2

α3

 = ~α⇔ α̃ = α1i+ α2j + α3k (1)


qs
qa
qb
qc

 = ~q ⇔ q̃ = qs + qai+ qbj + qck (2)

We want to determine ~vn using the accelerations ~an−1 and ~an−2, locations ~xn, ~xn−1 and ~xn−2 of a tracked point in three
frames and attitudes q̃n, q̃n−1 and q̃n−2 of three frames. Let us start by representing ~vn−1 using the known and target variables.

~vn−1 = q̃∗1 ṽnq̃1 − ~a(n−1)t1 (3)

We can represent ~vn−1 in the latest coordinate frame as ~v(n−1|n) such that ~v(n−1|n) = q̃ṽn−1q̃
∗.

~v(n−1|n) = ~vn − q̃1ãn−1q̃∗1t1 (4a)
= ~vn − ~a(n−1|n)t1 (4b)

The translation ~τ(1|n−1) can be computed as:

~τ(1|n−1) = ~vn−1t1 +
1

2
~an−1t

2
1 (5)

Then ~τ1 becomes:

~τ1 = ~v(n−1|n)t1 +
1

2
~a(n−1|n)t

2
1 (6)

By substituting (4b) in (6), we get [1]:

~τ1 = ~vnt1 − ~a(n−1|n)t21 +
1

2
~a(n−1|n)t

2
1 (7a)

= ~vnt1 −
1

2
~a(n−1|n)t

2
1 (7b)

Similarly, ~τ(3|n−1) is:

~τ(3|n−1) = ~vn−1t3 −
1

2
~a(n−2|n−1)t

2
3 (8)

~τ3 = q̃1τ̃(3|n−1)q̃
∗
1 (9a)

= ~v(n−1|n)t3 −
1

2
~a(n−2|n)t

2
3 (9b)

= ~vnt3 − ~a(n−1|n)t1t3 −
1

2
~a(n−2|n)t

2
3 (9c)

We can then compute ~τ2 as:

~τ2 = ~τ1 + ~τ3 (10a)

= ~vn(t1 + t3)− ~a(n−1|n)(
1

2
t21 + t1t3)− ~a(n−2|n)(

1

2
t23) (10b)

= ~vnt2 − ~a(n−1|n)(
1

2
t21 + t1t3)− ~a(n−2|n)(

1

2
t23) (10c)

When we define ~η1 and ~η2 as [1]:

~η1 = −1

2
~a(n−1|n)t

2
1 (11a)

~η2 = −~a(n−1|n)(
1

2
t21 + t1t3)− ~a(n−2|n)(

1

2
t23) (11b)

~τ1 and ~τ2 simply becomes:

~τ1 = ~vnt1 + ~η1 (12a)
~τ2 = ~vnt2 + ~η2 (12b)

We now have the translation between three frames in terms of the known variables and the desired velocity vector. Now,
in order to relate the kinematic equations with the tracked interest point, we will relate the point locations in three frames with
each other. Firstly, let us define normalized image coordinates as:

z′~x′ = z′

x′y′
1

 = K−1

xy
1

 (13)

where K is the camera calibration matrix and x and y are the regular image coordinates. This representation of point
locations is called normalized because the calibration matrix corresponding to the new coordinates is an identity matrix.

We can relate the normalized coordinates of the point at nth and (n− 1)th frames as:

zn−1~x
′
n−1 = q̃∗1(znx̃

′
n + τ̃1)q̃1 (14)

When we plug in the value of ~τ1, (14) becomes:

zn−1~x
′
n−1 = q̃∗1(znx̃

′
n + ṽnt1 + η̃1)q̃1 (15)

Let us separate three components of the velocity vector using quaternions q̃x = i, q̃y = j and q̃z = k [1].

zn−1~x
′
n−1 = q̃∗1(znx̃

′
n + q̃xvxt1 + q̃yvyt1 + q̃zvzt1 + η̃1)q̃1 (16a)

= znq̃
∗
1 x̃
′
nq̃1 + vxt1q̃

∗
1 q̃xq̃1 + vyt1q̃

∗
1 q̃y q̃1 + vzt1q̃

∗
1 q̃z q̃1 + q̃∗1 η̃1q̃1 (16b)

Let us represent the variables that are rotated by q̃∗1 with 1∗ as an extra subscript, such that q̃∗1 x̃
′
nq̃1 = x̃′n|1∗ . Then, the last

equation becomes:

zn−1~x
′
n−1 = zn−1

x′n−1y′n−1
1

 = znx̃
′
n|1∗ + vxt1q̃x|1∗ + vyt1q̃y|1∗ + vzt1q̃z|1∗ + η̃1|1∗ (17)

Components of the interest point location, x′n−1 and y′n−1 can be separately computed using the above equation. If we
represent the individual components of a quaternion with [q]s, [q]a, [q]b and [q]c, x′n−1 and y′n−1 can be computed as below [1].

x′n−1 =
zn[x̃′n|1∗]a + vxt1[q̃x|1∗]a + vyt1[q̃y|1∗]a + vzt1[q̃z|1∗]a + [η̃1|1∗]a

zn[x̃′n|1∗]c + vxt1[q̃x|1∗]c + vyt1[q̃y|1∗]c + vzt1[q̃z|1∗]c + [η̃1|1∗]c
(18)

y′n−1 =
zn[x̃′n|1∗]b + vxt1[q̃x|1∗]b + vyt1[q̃y|1∗]b + vzt1[q̃z|1∗]b + [η̃1|1∗]b

zn[x̃′n|1∗]c + vxt1[q̃x|1∗]c + vyt1[q̃y|1∗]c + vzt1[q̃z|1∗]c + [η̃1|1∗]c
(19)

Similarly, for x′n−2 and y′n−2:

x′n−2 =
zn[x̃′n|2∗]a + vxt2[q̃x|2∗]a + vyt2[q̃y|2∗]a + vzt2[q̃z|2∗]a + [η̃2|2∗]a

zn[x̃′n|2∗]c + vxt2[q̃x|2∗]c + vyt2[q̃y|2∗]c + vzt2[q̃z|2∗]c + [η̃2|2∗]c
(20)

y′n−2 =
zn[x̃′n|2∗]b + vxt2[q̃x|2∗]b + vyt2[q̃y|2∗]b + vzt2[q̃z|2∗]b + [η̃2|2∗]b

zn[x̃′n|2∗]c + vxt2[q̃x|2∗]c + vyt2[q̃y|2∗]c + vzt2[q̃z|2∗]c + [η̃2|2∗]c
(21)

After some primitive algebraic manipulations, the four equations above become:

vx

(
t1(x′n−1[q̃x|1∗]c − [q̃x|1∗]a)

)
+

vy

(
t1(x′n−1[q̃y|1∗]c − [q̃y|1∗]a)

)
+

vz

(
t1(x′n−1[q̃z|1∗]c − [q̃z|1∗]a)

)
+

zn

(
x′n−1[x̃′n|1∗]c − [x̃′n|1∗]a

)
= [η̃1|1∗]a − x′n−1[η̃1|1∗]c (22)

vx

(
t1(y′n−1[q̃x|1∗]c − [q̃x|1∗]b)

)
+

vy

(
t1(y′n−1[q̃y|1∗]c − [q̃y|1∗]b)

)
+

vz

(
t1(y′n−1[q̃z|1∗]c − [q̃z|1∗]b)

)
+

zn

(
y′n−1[x̃′n|1∗]c − [x̃′n|1∗]b

)
= [η̃1|1∗]b − y′n−1[η̃1|1∗]c (23)

vx

(
t2(x′n−2[q̃x|2∗]c − [q̃x|2∗]a)

)
+

vy

(
t2(x′n−2[q̃y|2∗]c − [q̃y|2∗]a)

)
+

vz

(
t2(x′n−2[q̃z|2∗]c − [q̃z|2∗]a)

)
+

zn

(
x′n−2[x̃′n|2∗]c − [x̃′n|2∗]a

)
= [η̃2|2∗]a − x′n−2[η̃2|2∗]c (24)

vx

(
t2(y′n−2[q̃x|2∗]c − [q̃x|2∗]b)

)
+

vy

(
t2(y′n−2[q̃y|2∗]c − [q̃y|2∗]b)

)
+

vz

(
t2(y′n−2[q̃z|2∗]c − [q̃z|2∗]b)

)
+

zn

(
y′n−2[x̃′n|2∗]c − [x̃′n|2∗]b

)
= [η̃2|2∗]b − y′n−2[η̃2|2∗]c (25)

Let us define a matrix D, with elements d11 - d44 and a column matrix ~f with elements f1 - f4. We can rewrite (22)-(25)
using the newly introduced variables as:

Eq. (22): vxd11 + vyd12 + vzd13 + znd14 = f1 (26a)
Eq. (23): vxd21 + vyd22 + vzd23 + znd24 = f2 (26b)
Eq. (24): vxd13 + vyd23 + vzd33 + znd34 = f3 (26c)
Eq. (25): vxd41 + vyd42 + vzd43 + znd44 = f4 (26d)

which results in:

D


vx
vy
vz
zn

 = f (27)

Finally, we have derived the equation for the unknown velocities [1]:

~ve =


vx
vy
vz
zn

 = D−1f (28)

3. UNCERTAINTY ON THE ESTIMATED VELOCITY

The velocity estimation takes 20 input arguments. The input vector can be written as:

~o =
[
~x′Tn ~x′Tn−1 ~x

′T
n−2 ~q

T
1 ~qT2 ~αTn−1 ~α

T
n−1
]T

(29)

Following the definition of ~o, the covariance matrix O is defined as:

O =



Σn 0 0 0 0 0 0
0 Σn−1 0 0 0 0 0
0 0 Σn−2 0 0 0 0
0 0 0 Q1 0 0 0
0 0 0 0 Q2 0 0
0 0 0 0 0 An−1 0
0 0 0 0 0 0 An−2


(30)

Q1 and Q2 matrices represent the covariance of the relative attitudes q̃1 and q̃2. If we define the velocity estimator function
as ~ve = l(~o), ~ve being the vector containing the velocities and zn, the covariance matrix of ~ve is computed as:

Vn = Jl(~o)(~o)OJl(~o)(~o)
T (31)

Now, we should find derivatives of l(~o) with respect to the elements of ~o.

For demonstration, let us find
∂l(~o)

∂x′n
. We use the equivalence1 ∂D

−1

∂x′n
= D−1

∂D

∂x′n
D−1.

∂l(~o)

∂x′n
=
∂D−1 ~f

∂x′n
(32a)

=
∂D−1

∂x′n
~f +D−1

∂ ~f

∂x′n
(32b)

= D−1
∂D

∂x′n
D−1 ~f +D−1

∂ ~f

∂x′n
(32c)

= D−1
∂D

∂x′n
~ve +D−1

∂ ~f

∂x′n
(32d)

This requires the computation of derivative of D and ~f for each parameter. After these derivatives are computed as shown
in Appendix A, columns of the Jacobian matrix is found by using the formula in (32d). The constructed Jacobian matrix is
plugged into 31 to find Ve. Upper left 3× 3 part of Ve corresponds to the covariance matrix of vn, Vn.

A. JACOBIAN’S TO BE USED IN UNCERTAINTY ESTIMATION

We need to find derivatives of D and ~f with respect to the elements of the input vector. In this appendix, we present these
derivatives.

Let us firstly define the derivative of a rotation operation with respect to quaternion parameters. Rotating a point with a
quaternion is conducted as:

P ′ = qPq−1 = RP (33)

(34) shows the equivalent rotation matrix. The derivatives of P ′ with respect to the quaternion parameters qs, qa, qb and qc

are presented in (35) - (38). We will denote the quaternion representing
∂P ′

∂qs
as J̃P ′(qs).

P̃ ′ = q̃P̃ q̃−1

p′ = Rp
⇒ R =

q2s + q2a − q2b − q2c −2qsqc + 2qaqb 2qsqb + 2qaqc
2qsqc + 2qaqb q2s − q2a + q2b − q2c −2qsqa + 2qbqc
−2qsqb + 2qaqc 2qsqa + 2qbqc q2s − q2a − q2b + q2c

 (34)

If we want to take the Jacobian of the rotation P̃ ′ = q̃P̃ q̃−1 with respect to q̃, we have to define
∂P ′

∂qξ
for ξ = s, a, b, c

individually:

∂P ′

∂qs
=

 2qs −2qc 2qb
2qc 2qs −2qa
−2qb 2qa 2qs

P = Rs,q̃P (35)

∂P ′

∂qa
=

2qa 2qb 2qc
2qb −2qa −2qs
2qc 2qs −2qa

P = Ra,q̃P (36)

∂P ′

∂qb
=

−2qb 2qa 2qs
2qa 2qb 2qc
−2qs 2qc −2qb

P = Rb,q̃P (37)

∂P ′

∂qc
=

−2qc −2qs 2qa
2qs −2qc 2qb
2qa 2qb 2qc

P = Rc,q̃P (38)

Now, the partial derivatives are presented.

1One can easily derive this equivalence by evaluating the derivative of D−1D = I .

∂D

∂x′n
=


0 0 0 d11/t1
0 0 0 d21/t1
0 0 0 d31/t1
0 0 0 d41/t1

 (39)

∂D

∂y′n
=


0 0 0 d12/t1
0 0 0 d22/t1
0 0 0 d32/t1
0 0 0 d42/t1

 (40)

∂D

∂x′n−1
=


t1[q̃x|1]c t1[q̃y|1]c t1[q̃z|1]c [~xn|1]c

0 0 0 0
0 0 0 0
0 0 0 0

 (41)

∂D

∂y′n−1
=


0 0 0 0

t1[q̃x|1]c t1[q̃y|1]c t1[q̃z|1]c [~xn|1]c
0 0 0 0
0 0 0 0

 (42)

∂D

∂x′n−2
=


0 0 0 0
0 0 0 0

t2[q̃x|2]c t2[q̃y|2]c t2[q̃z|2]c [~xn|2]c
0 0 0 0

 (43)

∂D

∂y′n−2
=


0 0 0 0
0 0 0 0
0 0 0 0

t2[q̃x|2]c t2[q̃y|2]c t2[q̃z|2]c [~xn|2]c

 (44)

For ξ = {s, a, b, c},

∂D

∂q′1,ξ
=

t1(x′n−1[J̃q̃x|1∗ (q1,ξ)]c − [J̃q̃x|1∗ (q1,ξ)]a) t1(x′n−1[J̃q̃y|1∗ (q1,ξ)]c − [J̃q̃y|1∗ (q1,ξ)]a)

t1(y′n−1[J̃q̃x|1∗ (q1,ξ)]c − [J̃q̃x|1∗ (q1,ξ)]b) t1(y′n−1[J̃q̃y|1∗ (q1,ξ)]c − [J̃q̃y|1∗ (q1,ξ)]b)

0 0
0 0

t1(x′n−1[J̃q̃z|1∗ (q1,ξ)]c − [J̃q̃z|1∗ (q1,ξ)]a) x′n−1[J̃~xn|1∗ (q1,ξ)]c − [J̃~xn|1∗ (q1,ξ)]a
t1(y′n−1[J̃q̃z|1∗ (q1,ξ)]c − [J̃q̃z|1∗ (q1,ξ)]b) y′n−1[J̃~xn|1∗ (q1,ξ)]c − [J̃~xn|1∗ (q1,ξ)]b

0 0
0 0

 (45)

∂D

∂q′2,ξ
=

0 0
0 0

t2(x′n−2[J̃q̃x|2∗ (q2,ξ)]c − [J̃q̃x|2∗ (q2,ξ)]a) t2(x′n−2[J̃q̃y|2∗ (q2,ξ)]c − [J̃q̃y|2∗ (q2,ξ)]a)

t2(y′n−2[J̃q̃x|2∗ (q2,ξ)]c − [J̃q̃x|2∗ (q2,ξ)]b) t2(y′n−2[J̃q̃y|2∗ (q2,ξ)]c − [J̃q̃y|2∗ (q2,ξ)]b)

0 0
0 0

t2(x′n−2[J̃q̃z|2∗ (q2,ξ)]c − [J̃q̃z|2∗ (q2,ξ)]a) x′n−2[J̃~xn|2∗ (q2,ξ)]c − [J̃~xn|2∗ (q2,ξ)]a
t2(y′n−2[J̃q̃z|2∗ (q2,ξ)]c − [J̃q̃z|2∗ (q2,ξ)]b) y′n−2[J̃~xn|2∗ (q2,ξ)]c − [J̃~xn|2∗ (q2,ξ)]b

 (46)

∂D

∂α′(n−1,x)
=

∂D

∂α′(n−1,y)
=

∂D

∂α′(n−1,z)
=

∂D

∂α′(n−2,x)
=

∂D

∂α′(n−2,y)
=

∂D

∂α′(n−2,z)
= 0 (47)

∂ ~f

∂x′n
=

∂ ~f

∂y′n
= 0 (48)

∂ ~f

∂x′n−1
=


−[~η1|1∗]c

0
0
0

 (49)

∂ ~f

∂y′n−1
=


0

−[~η1|1∗]c
0
0

 (50)

∂ ~f

∂x′n−2
=


0
0

−[~η2|2∗]c
0

 (51)

∂ ~f

∂y′n−2
=


0
0
0

−[~η2|2∗]c

 (52)

For ξ = {s, a, b, c},

∂ ~f

∂q′1,ξ
=


0
0

−(1
2 t

2
1 + t1t3)([q̃∗2 J̃αn−1(q1,ξ)q̃2]a − xn−2[q̃∗2 J̃αn−1(q1,ξ)q̃2]c)

−(1
2 t

2
1 + t1t3)([q̃∗2 J̃αn−1

(q1,ξ)q̃2]b − yn−2[q̃∗2 J̃αn−1
(q1,ξ)q̃2]c)

 (53)

∂ ~f

∂q′2,ξ
=


0
0

−(1
2 t

2
1 + t1t3)([J̃αn−1|1(q2,s)]a − xn−2[J̃αn−1|1(q2,s)]c)

−(1
2 t

2
1 + t1t3)([J̃αn−1|1(q2,s)]b − yn−2[J̃αn−1|1(q2,s)]c)

 (54)

∂ ~f

∂α′(n−1,x)


− 1

2 t
2
1

0
([qx|3∗]a − x′n−2[qx|3∗]c)(

1
2 t

2
1 + t1t3)

([qx|3∗]b − x′n−2[qx|3∗]c)(
1
2 t

2
1 + t1t3)

 (55)

∂ ~f

∂α′(n−1,y)


0
− 1

2 t
2
1

([qy|3∗]a − x′n−2[qy|3∗]c)(
1
2 t

2
1 + t1t3)

([qy|3∗]b − x′n−2[qy|3∗]c)(
1
2 t

2
1 + t1t3)

 (56)

∂ ~f

∂α′(n−1,z)


1
2 t

2
1xn−1

1
2 t

2
1yn−1

([qz|3∗]a − x′n−2[qz|3∗]c)(
1
2 t

2
1 + t1t3)

([qz|3∗]b − x′n−2[qz|3∗]c)(
1
2 t

2
1 + t1t3)

 (57)

∂ ~f

∂α′(n−2,x)


0
0
− 1

2 t
2
3

0

 (58)

∂ ~f

∂α′(n−2,y)


0
0
0
− 1

2 t
2
3

 (59)

∂ ~f

∂α′(n−2,z)


0
0

1
2 t

2
3xn−2

1
2 t

2
3yn−2

 (60)

B. REFERENCES

[1] Laurent Kneip, Agostino Martinelli, Stephan Weiss, Davide Scaramuzza, and Roland Siegwart, “Closed-form solution
for absolute scale velocity determination combining inertial measurements and a single feature correspondence,” in IEEE
International Conference on Robotics and Automation (ICRA), 2011.

