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ABSTRACT

EFFICIENT INERTIALLY AIDED VISUAL ODOMETRY TOWARDS MOBILE
AUGMENTED REALITY

Aksoy, Yağız

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

August 2013, 83 pages

With the increase in the number and computational power of commercial mobile devices
like smart phones and tablet computers, augmented reality applications are gaining more and
more volume. In order to augment virtual objects effectively in real scenes, pose of the camera
should be estimated with high precision and speed. Today, most of the mobile devices feature
cameras and inertial measurement units which carry information on change in position and
attitude of the camera. In this thesis, utilization of inertial sensors on mobile devices in aiding
visual pose estimation is studied. Error characteristics of the inertial sensors on the utilized
mobile device are analyzed. Gyroscope readings are utilized for aiding 2D feature tracking
while accelerometer readings are used to help create a sparse 3D map of features later to be
used for visual pose estimation. Metric velocity estimation is formulated using inertial read-
ings and observations of a single 2D feature. Detailed formulations of uncertainties on all the
estimated variables are provided. Finally, a novel, lightweight filter, which is capable of esti-
mating the pose of the camera together with the metric scale, is proposed. The proposed filter
runs without any heuristics needed for covariance propagation, which enables it to be used
in different devices with different sensor characteristics without any modifications. Sensors
with poor noise characteristics are successfully utilized to aid the visual pose estimation.

Keywords: Pose Estimation, Visual Odometry, Inertial Navigation, Probabilistic Robotics,
Augmented Reality
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ÖZ

GEZGİN ZENGİNLEŞTİRİLMİŞ GERÇEKLİĞE YÖNELİK EYLEMSİZLİK DESTEKLİ
GÖRSEL ETKİN POZ TAKİBİ

Aksoy, Yağız

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Ağustos 2013 , 83 sayfa

Gündelik yaşamda kullanılan akıllı telefon, tablet bilgisayar gibi mobil cihazların sayısındaki
ve işlemci gücündeki artışla birlikte, zenginleştirilmiş gerçeklik uygulamaları gittikçe daha
çok hacim kazanmaktadır. Gerçek sahnelere etkili biçimde sanal nesne yerleştirilebilmesi
için, kamera pozunun yüksek hassaslık ve hızla bulunması gerekir. Bu tezde eylemsizlik al-
gılayıcılarının görsel poz kestirimine destek için kullanımı çalışılmıştır. ullanılan mobil cihaz
üzerindeki eylemsizlik algılayıcılarının gürültü özellikleri analiz edilmiştir. Jiroskop ölçüm-
leri 2B nokta takibine yardım etmek için kullanılırken, ivmeölçer ölçümleri, sonradan görsel
poz kestiriminde kullanılmak üzere seyreltik 3B noktalardan oluşan haritanın yaratılmasına
yardım için kullanılmaktadır. Metrik hız kestirimi eylemsizlik ölçümleri ve 2B bir noktanın
gözlemleri kullanılarak formüle edilmiştir. Kestirilen değişkenler üzerindeki belirsizliklerin
ayrıntılı formülleştirilmesi sunulmuştur. Son olarak, kamera pozunu metrik ölçekle birlikte
kestirme yetisine sahip, özgün, hafif bir süzgeç önerilmektedir. Önerilen süzgeç, kovaryans
türetmek için hiçbir buluşsal parametre gerektirmemektedir.

Anahtar Kelimeler: Poz Kestirimi, Görsel Poz Takibi, Eylemsizliksel Gezinim, Olasılıksal

Robotik, Zenginleştirilmiş Gerçeklik
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Enhancing a real environment by rendering information, artificial objects or similar content
for entertainment or productivity is called Augmented Reality (AR). AR has an evergrowing
volume in today’s mobile world. One of the most important requirements of AR is finding
the pose of the camera with respect to the world in order to augment the objects in the right
place. As a result, creating a robust and lightweight pose estimation system is a big challenge
in the academic community.

Pose estimation is generally conducted using the visual cues in AR applications. When the
environment is controlled, i.e. a known target is placed in the environment and the augmen-
tation is done on that object, pose estimation is no harder than detecting a known target in
the image stream. On the other hand, if the challenge of pose estimation in an unknown envi-
ronment is taken, algorithms that are able to understand the structure of the environment and
then compute the camera pose are needed. This requirement results in computationally heavy
algorithms when high accuracy is needed. Since today’s AR applications are mainly directed
to be run on mobile devices, achieving real-time operation is a great challenge.

Most commercial off-the-shelf (COTS) mobile devices are equipped with cameras as well as
additional sensors such as gyroscopes, accelerometers or compasses. These sensors carry im-
portant information on the pose or pose change of the devices. Since the errors on information
coming from these sensors are independent of the visual information, utilization of the two
mediums together is expected to give a more robust pose estimation.

In this thesis, efficiency being the main focus, inertially aided pose computation using a
monocular image stream is studied. Ways to utilize inertial information to enable a com-
putationally lighter pose estimation are analyzed.

1.2 Augmented Reality

In parallel with the increasing number and computational power of commercial mobile de-
vices, AR applications get widespread everyday. There are many AR applications designed
to be used on tablets or mobile phones. For instance, Nokia announced an AR application
called City Lens, that shows information about the place the camera is pointed at [91]. IKEA
uses AR to show the items in the shopping catalogue in 3D and give the opportunity to furnish
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a room using virtual furniture [71]. AR can also be used in increasing productivity at work.
One of the first real-life applications of AR is enhanced vision for aircraft pilots during flight
[16]. In [97], authors propose an AR system to guide teachers during lectures. Poelman et al.
[69] describes an application to guide crime scene investigations.

Today, in addition to tablets and mobile phones, a more recent technology, smart glasses tech-
nology create a new volume for AR applications. For instance, recently-announced Google
Glass promises many AR applications such as AR assisted navigation [64]. The patent ap-
plications, such as [40] by Microsoft, show the commercial interest towards the future of
AR.

Increasing applicability results in development of hardware that is specifically designed for
AR. Metaio and ST Ericsson recently announced a collaboration to develop AREngine, a
chipset aimed at providing real-time AR experience on mobile devices [58].

The increase in the commercial volume of AR is supported by active AR research. The active
research topics in augmented reality, as listed in [99], are:

• Graphics rendering

• Pose tracking

• Tracker calibration and registration

• Display hardware

• Computer processing hardware

• Human interaction techniques

International Symposium on Mixed and Augmented Reality (ISMAR) can be said to be the
most widely known international academic event that focuses on AR research. According to
the survey conducted in [99], the most active topic in AR research appears to be pose tracking
in 10 years of ISMAR, between 1998 - 2008.

1.3 Visual Odometry

Camera pose extraction is an active topic in several different research areas, mainly in com-
puter vision and mobile robotics. In this section, a brief review of literature is presented. For a
more thorough literature survey, readers are referred to two tutorials published by Scaramuzza
and Fraundorfer [77, 18]. Vision research that is aimed at augmented reality has been produc-
ing methods for pose estimation in two main categories: filter-based and bundle adjustment
(i.e. optimisation) -based.

For filter-based approaches, Davison’s work [9], followed by the MonoSLAM algorithm by
Davison et al. [10] can be considered as a typical example. In MonoSLAM, authors construct
a probabilistic map of high quality sparse features [10]. They report achieving real-time
performance on a PC while also maintaining a high accuracy in the 3D feature positions and
the estimated camera pose.
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One of the leading techniques in optimization-based category is Parallel Tracking and Map-
ping (PTAM) proposed by Klein and Murray [33]. They separate the tracking (odometry) and
mapping processes and run them at different speeds at different threads. The mapping pro-
cess is run at a much smaller speed than the tracking. This allows them to map many sparse
features, resulting in an almost dense map. They define keyframes, selected such that they are
far from each other and has high tracking quality. Keyframes are then used in the mapping
process. The authors develop a mobile version of PTAM [34], which is computationally more
efficient while less accurate. They report running it real-time on a mobile phone.

Strasdat et al. [81] compare the advantages of filter- and optimization-based approaches in
terms of accuracy and computational cost. They conclude that although optimization-based
methods are shown to be more accurate, for a resource constrained system, filter-based sys-
tems should be more advantageous [81].

Fua and Lepetit [19] create a system to track a visual marker in order to augment objects on
it. In their paper, they describe planar object tracking as well as deformable object tracking.
They are able to estimate how a planar target on a napkin or a t-shirt is deformed and they
augment the new object according to the estimated deformation.

In order to simplify the problem and achieve real-time operation on a mobile phone, Pirchheim
and Reitmayr [68] assume a planar target and track the estimated homography of the target
rather than computing the 6 degree-of-freedom pose.

1.4 Combination of Inertial and Visual Information

Fusing inertial and visual information for tracking or pose estimation purposes gained at-
tention in two main academic communities: computer vision and mobile robotics. We will
briefly present the computer vision literature focusing on the AR and mobile robotics litera-
ture focusing mainly on robot navigation.

1.4.1 Augmented Reality

There are several ways to incorporate inertial measurements to augmented reality systems pro-
posed in the literature. We can roughly divide them into two categories: tightly coupled and
loosely coupled. In tightly coupled systems, inertial measurements are used to aid generation
of visual measurements at a low level. Loosely coupled systems, however, treat two mediums
independently and then fuse two information sources to generate the final estimation.

Accelerometers can be used to estimate the direction of gravity. This is used to create gravity-
aware systems. Kurz and Benhimane [37] propose a gravity-aware interest point description
scheme. By describing interest points that are on a vertical plane by taking the gravity vec-
tor as reference, they improve the descriptiveness of the features and diminish the need for
rotation-invariant interest point description. They then use the gravity-aware keypoints in an
augmented reality system [38] for vertical planes, such as building façades. Gravity is also
used for effective artificial object rendering on horizontal surfaces in their system. Gravity
vector is utilized also by Arth et al. [2] for a fast and accurate localization from images of a
city.
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Gyroscopes are shown to be useful to aid tracking applications. Kaheel et al. [27] compensate
for the rotation of the camera between two frames using gyroscope measurements so that no
rotational invariance is required during interest point description and matching. Klein and
Drummond [31, 32] use gyroscope measurements to estimate the direction of motion blur. In
[96, 95], You et al. use a gyroscope and a compass to estimate relative change in orientation
between two frames. The estimated change is then used to predict new locations of the tracked
2D points, making the tracking robust against fast motions and motion blur [96, 95]. Inertial
measurements are supported by vision to prevent them from diverging. In [26], they combine
gyroscope measurements with a line-based tracking system and achieve real time operation.
Hwangbo et al. [25] also use gyroscope measurements to predict locations of the tracked
points and propose an enhanced Kanade-Lukas-Tomasi tracking algorithm.

Inertially aided visual odometry is studied briefly in the augmented reality literature. In 1998,
Azuma et al. [3] noted that hybrid tracking is indeed necessary especially for outdoors aug-
mented reality. You and Neumann [94] utilizes an extended Kalman filter in which the state
is iterated with each gyroscope or vision measurement separately. The authors note an in-
crease in the accuracy of the combined algorithm when compared to two information sources
alone. Lang et al. [39] iterate inertial measurements at a high frequency and correct the drift
in position at a lower frequency using visual measurements. Foxlin et al. [16] uses two iner-
tial sensors differentially in order to find relative motion of the pilot’s head from the cockpit
in an augmented reality application for enhanced vision during flight. In [7], effect of use
of inertial measurements while tracking CAD models is analyzed. Recently, Oskiper et al.
[65, 66] proposed an error state Kalman filter where all tracked points are considered as indi-
vidual visual measurements. Together with inertial measurements, their system use also GPS
measurements for wide area localization and odometry.

1.4.2 Robot Navigation

In the robot navigation literature, generally, a visually-aided inertial navigation is preferred
rather than inertially-aided visual odometry. Visual information is generally used to prevent
inertial navigation from diverging due to the bias. The most commonly used technique for vi-
sually aided inertial odometry is indirect Kalman filter. Indirect Kalman filter is an extended
Kalman filter where the state consists of errors on navigation input together with optional
inertial sensor biases. For example, Roumeliotis et al. [75] and Trawny et al. [87] uti-
lize error-state Kalman filters for spacecraft navigation. In [11], authors propose an indirect
Kalman filter formulation that is enhanced with epipolar geometry constraints. In [67], the
error state is defined with errors on both inertial and visual sensors.

Tardif et al. [84] use a stereo camera setup aided by inertial measurements. They use a
delayed-state Kalman filter, where the prediction step of the Kalman filter is repeated with
each inertial measurement and the state is updated once new visual measurement comes.
They combine the filtering approach with optimization algorithms that are run in small time
windows to increase accuracy.

Strelow and Singh [82] use an iterated Kalman filter, where, similar to [94], filter is updated
with either of inertial or visual measurements as soon as they arrive. [82] also proposes a
batch optimization method and compares the results with the online, filtering based approach.

Lobo and Dias [49] determine the horizon line using the vertical reference from inertial mea-
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surements. By using only one vanishing point, together with the inertial measurements, they
show that it is possible to estimate the focal distance of the camera. They also utilize inertial
measurements with visual information for reconstruction of the scene.

Troiani and Martinelli [88] and Martinelli [55] analyze which modes are observable when
visual observations are combined with inertial readings. With the metric scale being observ-
able, Nutzi et al. [63], Kneip et al. [36] and Lupton and Sukkarieh [54] develop algorithms
to estimate the metric scale of the visual pose measurements.

Mourikis and Roumeliotis [61] propose the so-called multi-state constraint Kalman filter
(MSCKF). In this paper, authors propose a motion model that is constrained by each tracked
point observation separately. They achieve this without augmenting each observed point in
the Kalman filter state, making the filter more efficient. Instead, each measured pose is aug-
mented to the state while the state is enlarged up to a maximum number of previous poses.
The processing is done off-line using SIFT [51], which is a very robust but computation-
ally heavy keypoint detection and description algorithm. In [44], Li and Mourikis propose
modifications on computation of covariance matrices in order to improve the performance of
MSCKF. The authors propose a computationally lighter version of MSCKF in [46], allow-
ing a smaller number of poses to be augmented to the state with several other performance
improvements. They show that operation at 10 Hz is possible on a mobile phone with the
proposed modifications. They report optimizing the estimators in their system in [45]. Li and
Mourikis then propose MCKFC 2.0 [47], which is reported to have better performance than
conventional EKF-SLAM systems without explicitly storing the mapped points. One should
note that the mobile applications presented in [46] and [45] does not implicitly report using
the inertial sensors on COTS mobile devices and the reported sampling rates of the inertial
sensors are much higher than the one utilized in this thesis. In [43], authors use MSCKF 2.0
for long distance odometry, successfully utilizing inertial sensors on a COTS mobile device
with visual information at 5 frames per second processing speed.

Other than the commonly-used extended Kalman filter, there are several other filters proposed
to be used in inertial - visual sensor cooperation in robot navigation. A similar but more
computationally complex Kalman filter type, called Unscented Kalman filter, is utilized in
[6]. Two examples that utilize particle filter are [93] and [14].

1.5 Scope and Organization of the Thesis

In this thesis, the task of utilizing accelerometer and gyroscope measurements to aid the visual
pose estimation is undertaken.

In Chapter 2, visual pose estimation is described. This chapter starts with 2D feature tracking.
A gyroscope-aided 2D feature tracking algorithm is also described. 2D feature tracking is
followed by 3D sparse map generation and handling using the tracked features. The initial 3D
positions of the mapped points are determined with help from accelerometer readings. The
theoretical formulation in this chapter ends with the pose estimation from the tracked points
and generated map.

Chapter 3 is on computation of relative pose using the inertial measurements. The chapter
starts with a detailed analysis of the error characteristics of the inertial sensors utilized. Then,
formulation of metric velocity estimation using inertial measurements and one tracked feature
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is presented. The velocity estimation is followed by relative attitude change computation.

The Extended Kalman Filter that is used to fuse two information mediums for pose estimation
is presented in Chapter 4. The state vector of the proposed filter is kept as small as possible
for computational efficiency. The state also includes the scaling between visual measurements
and metric scale. In the filter, inertial measurements are used for the prediction stage while
visual measurements are used in the correction stage. Using measurements in both stages
of the filter results in covariance propagation without any assumptions or heuristics needed,
separating our method from competing algorithms such as [46]. This makes our system the-
oretically complete while also easy to utilize in other devices with different inertial sensor
characteristics out-of-the-box.

Chapters 2, 3 and 4 feature detailed formulation of uncertainties on the estimated variables
and experimental results.

The thesis is concluded in Chapter 5.
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CHAPTER 2

VISUAL POSE ESTIMATION

Computing the pose of the camera visually requires some features, such as surfaces, lines
or points, be present in the image while the locations and/or orientations of these landmarks
are known in 3D world coordinates. In this thesis, point features are utilized. Detection and
tracking of 2D features on the image plane are described in Section 2.1. Section 2.1 also
includes a gyroscope-aided tracking algorithm. Determining the 3D positions of the tracked
keypoints are then described in Section 2.2. Computation of the visual pose measurement
using the tracked points and their corresponding 3D positions are described in Section 2.3.
Each section features an analysis of uncertainty on the estimated parameters.

2.1 Feature Tracking

2.1.1 Keypoint Detection

A local feature is a distinctive point or region in its immediate neighborhood. These features
are utilized for three main tasks: semantic interpretation, identifying localized anchor points
and image representation [89]. In this thesis, we focus on tracking anchor points - or keypoints
- in image streams in order to locate them in 3D and eventually compute camera pose from
2D-3D point correspondences.

Literature for keypoint detection is very rich. There are two main categories: blob detection
and corner detection. The blob detectors, such as SIFT [51] or SURF [5], are generally more
robust compared to corner detectors. Corner detectors like Harris [21], Good Features to
Track [78], BRISK [42] or FAST [72], on the other hand, stand out by being more efficient.

In our system, ORB [76] keypoints are utilized. ORB keypoints are consistent FAST key-
points [72, 73, 74] that occurs simultaneously in several scales at the same point in the Gaus-
sian scale space. As seen in Figure 2.1, FAST locates keypoints by comparing intensities of
pixels on a circle around the center point (see Figure 2.1). If there is a large serie of low-
intensity or high-intensity points, the center is marked as a FAST corner.

We detect the keypoints using FAST and select the ones with highest Harris scores [21]. Harris
score is a cornerness measurement representing how sharp the detected corner is. It is based
on second order moments in the neighborhood of the detected corner. Points with high Harris
scores are also favorable by the utilized Kanade-Lucas-Tomasi tracking algorithm [53, 78] as
the Harris cornerness measure is based on second order moments.
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Figure 2.1: FAST keypoint detection (image taken from [72]). FAST algorithm compares
intensity values of the pixels numbered from 1 to 16 with intensity of the center pixel. If there
are long series of points in the circle that have higher/lower intensities than the center pixel,
the center pixel is marked as a keypoint.

2.1.2 2D Feature Tracking

The detected keypoints are tracked in consecutive frames for 3D map generation and pose
computation. For the tracking, we use a robust version of the iterative Kanade-Lucas-Tomasi
(KLT) feature tracker [4, 53, 78].

Let us denote two consecutive grayscale frames with I0 and I1 and a point~u =
[
ux uy

]T in I0

with corresponding location~v =
[
vx vy

]T in I1. The KLT algorithm minimizes the following
cost function [8]:

ξ (~d) = ξ (

[
dx

dy

]
) = ∑

W
(I0(x,y)− I1(x+dx,y+dy))

2 (2.1)

where W is the search window and ~d. To find ~d that minimizes the cost function above,
a method based on image derivatives is proposed [4, 78]. Firstly, let us define the image
derivatives:

∂ I0(x,y)
∂x

= I0,x =
I0(x+1,y)− I0(x−1,y))

2
(2.2)

∂ I0(x,y)
∂y

= I0,y =
I0(x,y+1)− I0(x,y−1))

2
(2.3)

The derivatives are used to construct the spatial gradient matrix [8]:
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G = ∑
W

[
I2
0,x(x,y) I0,x(x,y)I0,y(x,y)

I0,x(x,y)I0,y(x,y) I2
0,y(x,y)

]
(2.4)

After the construction of G, an iterative process starts with an initial guess for ~v. The initial
guess can be selected as the previous location of the point, ~u. The new location can also set
to a predicted location using a motion model or additional measurements such as gyroscopes
(see Section 2.1.3). Let us denote the translation between the original location of the point and
the estimated current location by ~̂v−~u = ~̂d. Difference between two image windows during
the kth iteration is:

δ Ik(x,y) = I0(x,y)− I1(x+ d̂x,k,y+ d̂y,k) (2.5)

Then, image mismatch vector is constructed as:

~mk = ∑
W

[
δ Ik(x,y)I0,x(x,y)
δ Ik(x,y)I0,y(x,y)

]
(2.6)

As proposed by Lucas and Kanade [53], using G and ~mk, the flow of the point can be computed
by:

~fk = G−1~mk (2.7)

Then the new estimation for the point location becomes:

~̂vk = ~̂vk−1 +~fk (2.8)

The equations (2.5) - (2.8) are iterated until the flow ~fk becomes too small or maximum
number of iterations is reached.

The point is declared lost if the cost function is higher than a threshold after an affine trans-
formation is fit between two image patches, and those patches are compared [78].

In KLT, since the tracking is performed between consecutive frames only, the tracked points
can drift off their original location. To minimize the effect of this shortcoming, lost points
should be detected with high precision. There are additional methods to detect the lost points
that are erroneously marked as not lost by KLT tracker, such as Template Inverse Matching
(TIM) [48]. In TIM, after new locations of the tracked points are found by KLT, they are
tracked backwards to the previous frame. If the original and the re-tracked positions of a
point in the previous frame are far from each other, the point is marked as lost.

2.1.3 Gyroscope Aided Feature Tracking

Under large changes in the attitude of a camera, displacement of 2D points on the image plane
can be very large [25]. As it can be seen in Figure 2.2, if the camera rotates rapidly, a larger
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Figure 2.2: Amount of 2D displacements resulting from rotation of the camera (image taken
from [25])

search window is needed not to lose the tracked point, which means a longer computation
time.

Now, consider two consecutive frames in an image stream. Let the projection matrices corre-
sponding to two poses of the camera be P1 = K[I3×3‖~03×1] and P2 = K[R‖~t]. Also consider
a plane in 3-dimensional space represented with a normal vector ~n and a scalar d such that
~nT X +d = 0 for points X on the defined plane. Then, projections of the points on the plane in
two images can be related by a homography matrix H [22].

H = K(R−
~t~nT

d
)K−1 (2.9)

This homography matrix relates the points in two images as in (2.10).

z2

x2
y2
1

= H

x1
y1
1

 (2.10)

where z2 is a normalization parameter converting homogeneous coordinates to actual point
coordinates. If the translation between two camera poses is zero, (2.9) becomes:

H = KRK−1 (2.11)

Notice that (2.11) is independent of the plane. This means that if the translation between two
poses is close to zero, every 2D point in the first frame can be approximately mapped to the
second frame by a single homography without a planarity assumption.
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When gyroscope readings are available, we readily have a measurement of interframe rotation.
Then, using (2.11), one can generate predictions for new point locations in the new frame
[25]. By placing the search window around the predicted points, fine locations of the tracked
points can be estimated using the utilized tracking algorithm. This way, under large camera
rotations, tracking can be achieved with a smaller search window size, as seen in Figure 2.2.

2.1.4 Uncertainty on Feature Position

Computation of uncertainty on locations for the tracked points is based on the work of Nickels
and Hutchinson [62]. We compute the sum of squared distances (SSD) (2.12) in a small
window around the tracked point (W ) (we used a window of 5×5) in the neighborhood of the
point (SW ). The neighborhood is selected with the same size as the search window used in
KLT tracker. The response distribution (RD) is obtained by applying an exponential function
to SSDi (2.13). A 2D Gaussian distribution is fit to RDi in order to estimate the covariance Pi

of the ith tracked point (2.14).

SSDi(u,v) = ∑
m,n∈W

(
W (m,n)−SW (u+m,v+n)

)2 (2.12)

RDi = e−ki×SSDi ; such that ki = argmin
ki

|1− ∑
m,n∈SSD

e−ki×SSD| (2.13)

Σi =


∑u,v∈RD RDi(u,v)(u−ui)

2

∑u,v∈RD RDi(u,v)
∑u,v∈RD RDi(u,v)(u−ui)(v− vi)

∑u,v∈RD RDi(u,v)
∑u,v∈RD RDi(u,v)(u−ui)(v− vi)

∑u,v∈RD RDi(u,v)
∑u,v∈RD RDi(u,v)(v− vi)

2

∑u,v∈RD RDi(u,v)

 (2.14)

2.2 Map Generation and Map Handling

Computation of visual pose measurement requires features on the image plane together with
their corresponding positions in 3D with respect to a reference coordinate frame. The set of
points with known (or as described in this section, estimated) 3D positions is called the map.
As the tracked 2D points are sparse, our map consists of sparse points in 3D. For a more
effective visual pose estimation, 2D points are selected such that they are far from each other
on the image plane.

2.2.1 Map Generation

In order to find three-dimensional locations of the 2D points detected in a monocular sys-
tem, one should observe the points in at least two different poses. It is not straightforward
to initialize a previously unknown map in monocular camera setup because of the two-way
dependency: for determination of a 3D points depth from the camera center, at least two dif-
ferent poses have to be known while for visual pose computation, the 3D point locations and
their corresponding 2D projections are needed.
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There are several approaches for map initialization. Davison [9] uses a particle filter-like ap-
proach and generate depth hypotheses for the 2D features observed in the first frame. The
depth hypotheses are tested with each new frame by projecting the 3D point for each hypoth-
esis and comparing the projection with the tracked 2D point location. After the point depth
can be safely approximated as a Gaussian distribution, the point is added to the map.

Klein and Murray [33], on the other hand, explicitly ask the user to move the camera for map
initialization. After the user signals that the movement of the camera is finalized, by assuming
that the translation of the camera is 10 centimeters in order to create a map with a metric scale,
3D feature points are initialized by triangulation of 2D feature pairs observed in the first and
the latest frames. The initial map is refined via bundle adjustment as new frames arrive.

When inertial measurements are available, an estimate for the camera pose can be computed
without the map being unavailable in the beginning. By computing the relative pose between
the first and nth frames by integration of accelerometer and gyroscope measurements, 3D
locations of the tracked 2D points can be found via triangulation, as formulated in Appendix
C.

In the proposed system, the user is asked to move the camera horizontally for one seconds for
initialization. The reasons for the restricted movement are:

• In order to initialize 3D point locations with high-accuracy, the rays from the two cam-
era centers to the triangulated point should be separated with a sufficiently large angle
[22] (see Figure 2.3). This means that the system should allow sufficient time for the
user to move the camera.

• As analyzed in Section 3.1.1.1, inertial measurements tend to diverge rapidly due to
the bias on them. This means that the pose of the device can not be effectively esti-
mated after even a short time interval by using inertial measurements only. 3D points
found by highly noisy initial pose estimates damage the system operation dramatically.
By restricting the motion to a single dimension, only readings on one axis of the ac-
celerometer are integrated. This way, the error is trapped to be in only one direction,
affecting only the scale of the pose measurement as explained below.

2.2.1.1 Computation of translation during map initialization

We set the world coordinate system as the initial pose of the camera. In the camera coordinate
system, the principal axis of the camera is defined as the z− axis while the x− and y− axes
define the principal plane, the x−axis being the horizontal component. Hence, the initial pose
can be represented as:

~φ1 = [~τT
1 |~qT

1 ]
T = [0 0 0 | 1 0 0 0]T (2.15)

where ~q1 represents the attitude in quaternion representation such that q̃1 = 1. By restricting
the motion to be only in the x−axis, the pose at the nth

i frame, corresponding to time ti, can
be approximated as:
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Figure 2.3: Uncertainty on 3D point positions after triangulation (image taken from [22]).
Note that higher the angle between two rays from the camera center, lower the uncertainty on
the 3D feature position.

~φni = [τ̂x,ni 0 0 | 1 0 0 0]T (2.16)

τ̂x,ni is the translation estimated using the accelerometer readings by integration until time ti.
Assuming that the initial velocity is zero, we can write τ̂x,ni as sum of displacements during
each interval between inertial readings:

τ̂x,ni =
ki

∑
k=0

τx,k (2.17)

Here, ki represents the index of the last inertial measurement during the initialization time. We
will drop the subscript x here for a more clean mathematical derivation. The displacements
for each time interval can be written as:

τk = vkts +
1
2

αkt2
s (2.18)

ts represents the time between two inertial readings such that ki× ts ≈ ti. By writing the ve-
locity vk in terms of the preceding accelerometer readings α j, the previous equation becomes:

τk =
k−1

∑
j=0

(α jts)ts +
1
2

αkt2
s (2.19a)

=

(
k−1

∑
j=0

α j +
1
2

αk

)
t2
s (2.19b)
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Plugging the above equation into (2.17) results in:

τ̂x,ni =
ki

∑
k=0

(
k−1

∑
j=0

α j +
1
2

αk

)
t2
s (2.20a)

=

(
ki

∑
k=0

k−1

∑
j=0

α j +
1
2

ki

∑
k=0

αk

)
t2
s (2.20b)

=

(
ki

∑
k=0

(ki− k)αk +
1
2

ki

∑
k=0

αk

)
t2
s (2.20c)

=
ki

∑
k=0

(ki +0.5− k)αkt2
s (2.20d)

In order to compute the variance of the translation, let us represent the accelerometer reading
αk by the sum of the actual acceleration and the zero mean Gaussian additional white noise
on sensor (as analyzed in Section 3.1.1.2) such that αk = ak + ek. Then:

E {αk}= E {ak + ek} (2.21a)

= E {ak}+E {ek} (2.21b)

= ak (2.21c)

E
{
(αk−E {αk})2

}
= E

{
(ak + ek−ak)

2} (2.22a)

= E
{

e2
k
}

(2.22b)

= σ
2
ek

(2.22c)

The mean value of τ̂ni is computed as:

E {τ̂ni}= E

{
ki

∑
k=0

(ki +0.5− k)αkt2
s

}
(2.23a)

=
ki

∑
k=0

E {αk}(ki +0.5− k)t2
s (2.23b)

=
ki

∑
k=0

ak(ki +0.5− k)t2
s (2.23c)

= τni (2.23d)
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The variance of τ̂ni is then computed as:

σ
2
τ̂ni

= E
{
(τ̂ni−E {τ̂ni})

2
}

(2.24a)

= E


(

ki

∑
k=0

(ki +0.5− k)αkt2
s −

ki

∑
k=0

ak(ki +0.5− k)t2
s

)2
 (2.24b)

= E


(

ki

∑
k=0

(ki +0.5− k)(αk−ak)t2
s

)2
 (2.24c)

=
ki

∑
k=0

E
{
(αk−ak)

2}(ki +0.5− k)2t4
s (2.24d)

=
ki

∑
k=0

σ
2
ek
(ki +0.5− k)2t4

s (2.24e)

= σ
2
ek

t4
s

ki

∑
k=0

(ki +0.5− k)2 (2.24f)

= σ
2
ek

t4
s
(ki +1)(4k2

i +8ki +3)
12

(2.24g)

2.2.1.2 Computation of scaling between estimated visual pose and metric scale

Uncertainty on τ̂ni causes a scaling error between the true and estimated 3D coordinates of
the mapped points. This results in estimation of visually estimated position of the camera at
a slightly different scale during the system operation. This scaling is defined as:

λ ,
‖τ‖ measured visually

metric ‖τ‖
(2.25)

Following the definition above, λ becomes:

λ =
τ̂ni

τni

(2.26)

Using (2.23), initial estimate of λ can be computed as:

E {λ}= E
{

τ̂ni

τni

}
(2.27a)

=
E {τ̂ni}

τni

(2.27b)

=
τni

τni

(2.27c)

= 1 (2.27d)
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Uncertainty on the scale estimate is, then:

E
{
(λ −E {λ})2}= σ

2
λ

(2.28a)

= E
{
(
τ̂ni

τni

−1)2
}

(2.28b)

= E
{
(
τ̂ni− τni

τni

)2
}

(2.28c)

=
E
{
(τ̂ni− τni)

2
}

τni
2 (2.28d)

= σ
2
τ̂ni
/τ

2
ni

(2.28e)

2.2.2 Map Handling

The initial map includes points only from the first ni frames. As time progresses, the field of
view of the camera is expected to change. As old points are lost and new points are introduced,
the map should be altered in order to include newly explored areas.

Systems like [33] includes currently observed and previously observed points together, ex-
panding the map as new areas are observed. This is a computationally heavy approach and
effects the real time operation as time progresses. In the mobile version [34], some of the
previous points are deleted from the map, keeping the map smaller than a defined maximum
size to guarantee the needed speed.

In the proposed system, we choose to keep the map at a defined maximum size of m points
consisting of only currently observed points while l > m points are actively tracked. The map
is refined every ni frames and the points that have gone out of sight or lost in the tracking
process are deleted from the map. The map size is preserved by triangulating the tracked (but
not mapped) points and adding them to the map.

2.3 Pose Estimation from 2D-3D Point Correspondences

In this thesis, the phrase visual measurement corresponds to the position and the attitude -
two of them simultaneously called the pose - of the camera as measured from 3D points with
known locations in the world frame and their 2D correspondences on the image plane. The
visual measurement is represented by ~φ .

~φ =

[
~τ
~q

]
(2.29)

Here~τ represents the translation from the world center to the camera center in three axes and
~q is composed of the four parameters of the rotation quaternion that represents the attitude of
the camera.
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~τ =
[
τx τy τz

]T (2.30)

~q =
[
qs qa qb qc

]T ⇒ q̃ = qs +qai+qb j+qck (2.31)

Assuming that the calibration matrix K of a camera is known, it is possible to determine the
pose of the camera with respect to the world coordinates using 3D points in the world frame
and their 2D correspondences on the image plane [22]. This problem is called the Perspective-
n-Point (PnP) problem [41].

There are several algorithms to solve the PnP problem. the Direct Linear Transformation
(DLT) algorithm, as presented in [22], finds the projection matrix P from at least 6 point
correspondences. There are iterative methods, such as [52], that provides highly accurate
estimates. Non-iterative methods, on the other hand, appear as faster while being less accurate
when compared to iterative ones. Due to limited computational resources on mobile devices,
we utilize a non-iterative algorithm called EPnP [60, 41]. It is reported in [41] that high speed
can be achieved with a small sacrifice from accuracy.

Briefly, EPnP algorithm creates four virtual control points from linear combinations of avail-
able n 3D points in the map. The algorithm requires n to be at least 4. The projection equations
in the camera coordinate frame are written using the control points. The equations are used to
define a matrix, the nullspace of which will then lead to the solution [60]. The result can be
further refined using Gauss-Newton optimization [41].

2.3.1 Uncertainty on Estimated Pose

The constructed hybrid pose estimation system requires covariance of the visual measurement
due to its stochastic nature. In order to compute the covariance Φ of the estimated visual pose
φ , the method presented in [23] is adopted.

The projection function that maps a 3D point ~X = [X Y Z]T onto the image plane with coor-
dinates~x = [x y]T is defined as:

~x = p(~φ ,~X) (2.32)

Using Taylor expansion, we can linearize p(~φ ,~X) around ~φn and ~Xi as shown in (2.33).

~xi +∆~xi = p(~φn +∆~φ ,~Xi)≈ p(~φn,~Xi)+ Jp(~φn,~Xi)
(~φ)∆~φ (2.33)

which yields

∆~xi ≈ Jp(~φ ,~Xi)
(~φ)∆~φ (2.34)

The Jacobian Jp(~φ ,~Xi)
is defined in Appendix D. We can concatenate (2.34) for every point

~xi|mi=1 and obtain:
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∆~x1
∆~x2

...
∆~xm

=


Jp(~φ ,~X1)

(~φ)

Jp(~φ ,~X2)
(~φ)

...
Jp(~φ ,~Xm)

(~φ = ~φn)

∆~φ ⇒ ∆~xcont = Jcont∆~φ (2.35)

The least-squares solution of (2.35) for ∆~φ yields

∆~φ = J†
cont∆~xcont (2.36)

where J†
cont is the pseudoinverse (or generalized inverse) of Jcont defined as

J†
cont = (JT

contJcont)
−1JT

cont (2.37)

Then, we can compute the covariance matrix of the visual measurement vector φ , using the
point uncertainties Σi as:

Φ = E{∆~φ∆~φ T} (2.38a)

= E{(J†
cont∆~xcont)(J

†
cont∆~xcont)

T} (2.38b)

= E{J†
cont∆~xcont∆~xT

cont(J
†
cont)

T} (2.38c)

= J†
contE{∆~xcont∆~xT

cont}(J
†
cont)

T (2.38d)

= J†
cont


Σ1 0 . . . 0

0 Σ2
...

...
. . .

...
0 . . . . . . Σm

(J†
cont)

T (2.38e)

It is reported in [23] that the effect of the uncertainties on 3D point locations is negligible.
Following that observation, in the computation of measurement covariance, uncertainty on
the locations of 3D points are not taken into account.

2.4 Experimental Results

During the experiments for visual tracking and pose estimation, Grafitti and Boat images from
Afine Covariant Features dataset [59] are used.

2.4.1 Gyroscope-aided 2D Tracking

In Section 2.1.3, we formulated the gyroscope-aided feature tracking, where new positions of
the features are predicted using the gyroscope readings before the KLT tracking algorithm is
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run. A typical result of this approach can be seen in Figure 2.4. As seen in the figure, the
predicted points are closer to the actual new positions of the features. The resultant predic-
tion sometimes result in almost exact positions, as seen in Figure 2.5. This case occurs when
translation between two poses of the camera is actually small. When the translation is some-
what high or the gyroscope reading is erroneous, the prediction may result in slightly worse
positions as seen in Figure 2.6.

In order to compare the performance of regular and gyroscope-aided tracking, we can look
at the distribution of distances between the initial and final positions of the tracked points for
the two cases. Figure 2.7 shows that distribution. We can conclude that use of gyroscopes
effectively reduces the expected distance to the new feature position, making the tracking
more robust against fast camera rotations, which was the expected outcome.

Figure 2.4: A typical example of the prediction of the next positions of the keypoints us-
ing gyroscope readings (Red lines are drawn between the initial position of a point and the
predicted position while green lines are between the predicted position and the final position)

Figure 2.5: An ideal example of the prediction of the next positions of the keypoints using gy-
roscope readings (Red lines are drawn between the initial position of a point and the predicted
position while green lines are between the predicted position and the final position)
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Figure 2.6: Worst-case scenario for the prediction of the next positions of the keypoints us-
ing gyroscope readings (Red lines are drawn between the initial position of a point and the
predicted position while green lines are between the predicted position and the final position)

2.4.2 Visual Pose Estimation

In order to test the performance of the pose estimation, ground truth of four image sequences
is prepared. Two of the sequences consist of complex camera motion while the others has
mostly rotational and mostly translational motion. The ground truth is prepared by selecting
four points with known 3D locations on each image by hand and computing the pose using
the EPnP algorithm.

During the visual tests, if there are m points in the map, we track m/2 extra points in order to
keep the map size constant when points in the map are lost due to tracking errors or the point
going out of sight. So, if the performance of the visual pose estimation with a map size of 20
is reported, there are a total of 30 2D points tracked.

On a laptop computer, the time required for one visual pose estimation iteration for different
map sizes are listed in Table 2.1.

Table 2.1: Average time required for visual pose and covariance computation for different
map sizes

# of tracked points Time (ms)
20 in map, 30 total 20.08
16 in map, 24 total 13.38
12 in map, 18 total 10.42
8 in map, 12 total 7.53
6 in map, 9 total 4.47

Figure 2.8 and 2.9 show a typical example of performance difference with different map sizes.
One can observe that although the performances are similar in the beginning, as the tracked
points and the map starts to get corrupted, maps with smaller sizes start to degenerate the pose
estimation. It is observed that the quality of 3D points affects the the error performance of the
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Figure 2.7: Histograms of the distances between the previous or the predicted positions and
the final positions of tracked keypoints

translation and rotation equally.

The degeneration can be more dramatic when there is highly erroneously triangulated 3D
points in the map. Figure 2.10 and Figure 2.11 shows that case. When there are small num-
ber of points in the map, new 3D points that are introduced to the map can degenerate the
performance rapidly, while if the map is bigger, pose estimation is more robust, as expected.

2.4.3 Map Handling

Figure 2.12 describes the mapped points in different moments during the system operation.
One can notice that the detected points are as distributed as possible, in order to get a better
visual pose estimation.

One should note that when new points are introduced, they may be erroneously triangulated.
Although it can be detected after some time, this problem may affect the visual pose estima-
tion performance, as illustrated in Section 2.4.2.
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Figure 2.8: Position estimation performances with various map sizes
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Figure 2.9: Attitude estimation performances with various map sizes
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(a) Initial points in the map (b) Tracked-only points start to appear in the
newly discovered regions

(c) The map starts to move to the new regions (d) The map is completely renewed after the
initial points went out of sight

Figure 2.12: Different steps of map handling
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CHAPTER 3

INERTIAL POSE ESTIMATION

We use the inertial sensor readings to compute the change in pose between consecutive
frames. We utilize two inertial sensors: the accelerometer and the gyroscope. The accelerom-
eter readings reflect the sum of the actual acceleration of the device and the gravity vector. We
assume an accelerometer that only measures the acceleration of the device and eliminate the
gravity vector from actual accelerometer measurements by using the gravity vector provided
by Android system, which utilizes a combination of different sensors to estimate the direction
of the gravity. The gyroscope measures the rotational velocity.

3.1 Inertial Sensors on Mobile Devices

Inertial navigation systems generally utilize standalone inertial sensors. Since the main pur-
pose of inertial measurement units on mobile devices is detecting simple gestures, such as
orientation change or shake, they are not generally well-suited for the odometry applications.
It should be noted that characteristics of inertial measurement units on mobile devices are far
worse than the ones used in inertial navigation systems. In this section, we analyze the noise
characteristics of the sensors on ASUS TF201 Transformer Prime tablet, which is utilized in
our experiments.

One of the shortcomings of inertial sensors on mobile devices is low sample rate. For example,
the sensors used in [94] deliver readings at 1 kHz, or the ones used in [17] has the sample rate
of 1.92 kHz while the mobile device used in [61] records readings at 100 Hz. The device
utilized in our system has the sample rate of only 48 Hz.

The other shortcomings, which can be listed as highly varying bias and low signal-to-noise
ratio, are analyzed in this section.

It should be noted that we utilize the inertial sensors in an augmented reality system for small
workspaces. This comes with the characteristic that the translational motion is very small
when compared to odometry systems for cars or autonomous robots. As analyzed below, since
noise on accelerometers are modeled as an additional Gaussian noise that is independent of
the actual acceleration, small actual acceleration results in a lower signal-to-noise ratio (SNR)
which makes it harder to extract information from the sensors.
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Figure 3.1: Bias terms on linear accelerometer readings

3.1.1 Noise Characteristics

Noise characteristics of the accelerometer and the gyroscope of the utilized mobile device are
found experimentally. The device is left resting on a still surface for 20 minutes. Since the
actual motion is known to be zero, the readings represent the noise on the sensors.

Firstly, the sampling rate of the sensors are found to be 48.53 samples per second. Note that
this rate is only slightly higher than the 30 frames per second operation of the camera.

3.1.1.1 Bias Analysis

Bias is defined as an additional non-zero term on the noise, which is particularly harmful in
the long term operation. As integration of the bias diverges with time, it should be carefully
handled in inertial navigation systems.

When bias term is constant on a sensor, it can easily be eliminated by listening to the sen-
sor in resting condition and determining the bias as the mean value of samples. However,
generally, bias changes with sensor turn-on and then varies slowly over time. This requires
tracking of bias on the sensors as done in [11, 67]. Tracking of 6 independent biases on 3-axis
linear accelerometer and 3-axis gyroscope measurements comes with the price of increased
mathematical and computational complexity.

The bias terms on the linear accelerometer and gyroscope are analyzed by taking the average
of 1000 consecutive samples. The plots showing the variation of bias terms with time on two
sensors can be seen in Figure 3.1 and 3.2.

Due to the highly varying nature of bias on inertial measurements of the mobile device, it is
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Figure 3.2: Bias terms on gyroscope readings

not an easy task to track them. To prevent the bias terms from causing the inertial navigation
to diverge [26], we utilize the inertial measurements only in small time intervals, reducing the
effect of the bias terms and hence reducing the need of determination of instantaneous bias
terms on sensor readings.

3.1.1.2 Distribution of Noise

Figure 3.3 and 3.4 show the histogram of sensor readings and their corresponding Gaussian
approximations.

Notice that each of the distributions can be effectively approximated by a Gaussian. This is
a very important result for the operation of the proposed system because the utilized Kalman
filter (see Appendix A) explicitly requires Gaussian distributed measurements for proper op-
eration.

Variance of the noise on the sensors are presented in Table 3.1. From these values, covariance
matrix A of accelerometer readings ~α and covariance matrix Ω of gyroscope readings ~ω can
be defined as:

A =

0.02542 0 0
0 0.03112 0
0 0 0.02382

 (3.1)

Ω =

0.00112 0 0
0 0.00082 0
0 0 0.00072

 (3.2)
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Figure 3.3: Distribution of linear accelerometer readings
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Figure 3.4: Distribution of gyroscope readings
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Table 3.1: Standard deviance of noise on the accelerometer and the gyroscope

x−axis y−axis z−axis
Accelerometer (m/s2) 0.0254 0.0311 0.0238
Gyroscope (rad/s) 0.0011 0.0008 0.0007

3.1.1.3 Power Spectral Density Estimation

Power spectral density (PSD) of a signal represents the frequency content of that signal. If yn

denotes a random signal, PSD can be formally defined as:

φ(ω) = lim
N→∞

E

 1
N

∣∣∣∣∣ N

∑
n=1

yne−iωn

∣∣∣∣∣
2
 (3.3)

There are several different algorithms for estimating the PSD of a random signal from its
samples. The algorithms can be categorized under two main categories: parametric and non-
parametric [80]. Parametric approaches need prior knowledge on the shape of the PSD. Non-
parametric methods, on the other hand, assumes no underlying structure of the PSD, causing
a decrease in the accuracy.

Since we want to estimate the PSD of the noise signals without a prior knowledge, a nonpara-
metric method known as the Welch method [92] is used. This method computes the PSD in
overlapping windows of samples of the random sequence and then estimates the actual PSD
by taking the average of the computed PSD’s of overlapping windows.

The resultant PSD’s of accelerometer and gyroscope readings can be seen in Figure 3.5 and
3.6.

As it can be seen from the PSD’s, the noise signal is white except for a DC term, which
represents the bias. This is an important result for the operation of the Kalman filter because
the filter requires Markov property, which states that the measurements and the inputs to the
system should depend only on the previous sample and not the ones before them.

3.2 External Calibration of the IMU and the Camera

In order to aid visual pose measurements, inertial sensor readings have to be transformed to
camera coordinate frame. The relative translation and rotation between two sensors are called
external calibration parameters. In the literature, there are several online, such as [13], and
offline methods, such as [50, 24, 29, 30]. These algorithms are utilized when there is an
ambiguity in the external calibration parameters.

In our case, since we utilize a COTS mobile device, the difference between two coordinate
frames are fixed and known. Although there may be small shifts in the coordinate frames
due to the manufacturing process, we will assume their effect on our system operation is
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Figure 3.7: Visualization of asynchronous operation

negligible.

3.3 Metric Translational Velocity Computation

In order to compute relative position change between two time instances, in addition to the
accelerometer readings, translational velocity of the camera is needed. In this section, we
present a method to estimate the instantaneous velocity.

Kneip et al. [35] formulated the computation of metric translational velocity from accelerom-
eter measurements and a visually tracked point in three frames. In this section, we adopt their
formulation with several small differences in order to derive the equation relating camera ve-
locity with inertial and visual measurements. Following the formulation, computation of the
covariance matrix of the estimated velocity is presented.

In [35], the sample rate of the accelerometer is assumed to be much greater than frame rate
of the image stream and a recursive formulation is developed for integration of accelerome-
ter readings. Since two rates are similar in our case (48 Hz accelerometer and 30 Hz image
stream), for a reasonable formulation, we assume that accelerometer readings are taken simul-
taneously with each image. We compute the accelerometer reading corresponding to an image
by simply taking weighted average of accelerometer readings in the time interval between two
consecutive frames as shown in Figure 3.7.

As it can be seen in Figure 3.8, three poses of the camera, ~φn, ~φn−1 and ~φn−2 at time instants
tn, tn−1 and tn−2, are considered. Time intervals are defined as t1 = tn− tn−1, t2 = tn− tn−2
and t3 = tn−1− tn−2. Accelerometer readings ~αn−1 and ~αn−2 are retrieved at tn−1 and tn−2.
Instantaneous velocities are denoted as ~vn, ~vn−1 and ~vn−2. Accelerations and velocities are
represented in the coordinate frames corresponding to the poses at their time instant. The
rotation from ~φn−1 to ~φn is defined as q̃1, from φn−2 to φn as q2 and from φn−2 to φn−1 as q3,
i.e. q2 = q1q3. These rotation quaternions are assumed to be known and can be computed
from visual measurements or gyroscope readings. The translation from φn to φn−1 is defined
as τ1, from φn to φn−2 as τ2 and from φn−1 to φn−2 as τ3. Translations are defined in the latest
coordinate frame.

We use the vector and quaternion representation of the variables interchangeably such that:
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Figure 3.8: Definition of three poses and relative transformations

α1
α2
α3

= ~α ⇔ α̃ = α1i+α2 j+α3k (3.4)


qs

qa

qb
qc

=~q⇔ q̃ = qs +qai+qb j+qck (3.5)

We want to determine ~vn using the accelerations~an−1 and~an−2, locations~xn,~xn−1 and~xn−2 of
a tracked point in three frames and attitudes q̃n, q̃n−1 and q̃n−2 of three frames. Let us start by
representing~vn−1 using the known and target variables.

~vn−1 = q̃∗1ṽnq̃1−~a(n−1)t1 (3.6)

We can represent~vn−1 in the latest coordinate frame as~v(n−1|n) such that~v(n−1|n) = q̃ṽn−1q̃∗.

~v(n−1|n) =~vn− q̃1ãn−1q̃∗1t1 (3.7a)

=~vn−~a(n−1|n)t1 (3.7b)

The translation~τ(1|n−1) can be computed as [35]:

~τ(1|n−1) =~vn−1t1 +
1
2
~an−1t2

1 (3.8)

Then~τ1 becomes:
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~τ1 =~v(n−1|n)t1 +
1
2
~a(n−1|n)t

2
1 (3.9)

By substituting (3.7b) in (3.9), we get:

~τ1 =~vnt1−~a(n−1|n)t
2
1 +

1
2
~a(n−1|n)t

2
1 (3.10a)

=~vnt1−
1
2
~a(n−1|n)t

2
1 (3.10b)

Similarly,~τ(3|n−1) is:

~τ(3|n−1) =~vn−1t3−
1
2
~a(n−2|n−1)t

2
3 (3.11)

~τ3 = q̃1τ̃(3|n−1)q̃
∗
1 (3.12a)

=~v(n−1|n)t3−
1
2
~a(n−2|n)t

2
3 (3.12b)

=~vnt3−~a(n−1|n)t1t3−
1
2
~a(n−2|n)t

2
3 (3.12c)

We can then compute~τ2 as:

~τ2 =~τ1 +~τ3 (3.13a)

=~vn(t1 + t3)−~a(n−1|n)(
1
2

t2
1 + t1t3)−~a(n−2|n)(

1
2

t2
3) (3.13b)

=~vnt2−~a(n−1|n)(
1
2

t2
1 + t1t3)−~a(n−2|n)(

1
2

t2
3) (3.13c)

When we define ~η1 and ~η2 as:

~η1 =−
1
2
~a(n−1|n)t

2
1 (3.14a)

~η2 =−~a(n−1|n)(
1
2

t2
1 + t1t3)−~a(n−2|n)(

1
2

t2
3) (3.14b)

~τ1 and~τ2 simply becomes:

~τ1 =~vnt1 +~η1 (3.15a)
~τ2 =~vnt2 +~η2 (3.15b)
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We now have the translation between three frames in terms of the known variables and the
desired velocity vector. Now, in order to relate the kinematic equations with the tracked
interest point, we will relate the point locations in three frames with each other. Firstly, let us
define normalized image coordinates as:

z′~x′ = z′

x′

y′

1

= K−1

x
y
1

 (3.16)

where K is the camera calibration matrix and x and y are the regular image coordinates.
This representation of point locations is called normalized because the calibration matrix
corresponding to the new coordinates is an identity matrix.

We can relate the normalized coordinates of the point at nth and (n−1)th frames as [35]:

zn−1~x′n−1 = q̃∗1(znx̃′n + τ̃1)q̃1 (3.17)

When we plug in the value of~τ1, (3.17) becomes:

zn−1~x′n−1 = q̃∗1(znx̃′n + ṽnt1 + η̃1)q̃1 (3.18)

Let us separate three components of the velocity vector using quaternions q̃x = i, q̃y = j and
q̃z = k.

zn−1~x′n−1 = q̃∗1(znx̃′n + q̃xvxt1 + q̃yvyt1 + q̃zvzt1 + η̃1)q̃1 (3.19a)

= znq̃∗1x̃′nq̃1 + vxt1q̃∗1q̃xq̃1 + vyt1q̃∗1q̃yq̃1 + vzt1q̃∗1q̃zq̃1 + q̃∗1η̃1q̃1 (3.19b)

Let us represent the variables that are rotated by q̃∗1 with 1∗ as an extra subscript, such that
q̃∗1x̃′nq̃1 = x̃′n|1∗ . Then, the last equation becomes:

zn−1~x′n−1 = zn−1

x′n−1
y′n−1

1

= znx̃′n|1∗+ vxt1q̃x|1∗+ vyt1q̃y|1∗+ vzt1q̃z|1∗+ η̃1|1∗ (3.20)

Components of the interest point location, x′n−1 and y′n−1 can be separately computed using
the above equation. If we represent the individual components of a quaternion with [q]s, [q]a,
[q]b and [q]c, x′n−1 and y′n−1 can be computed as below [35].

x′n−1 =
zn[x̃′n|1∗ ]a + vxt1[q̃x|1∗ ]a + vyt1[q̃y|1∗ ]a + vzt1[q̃z|1∗ ]a +[η̃1|1∗ ]a

zn[x̃′n|1∗ ]c + vxt1[q̃x|1∗ ]c + vyt1[q̃y|1∗ ]c + vzt1[q̃z|1∗ ]c +[η̃1|1∗ ]c
(3.21)

y′n−1 =
zn[x̃′n|1∗ ]b + vxt1[q̃x|1∗ ]b + vyt1[q̃y|1∗ ]b + vzt1[q̃z|1∗ ]b +[η̃1|1∗ ]b

zn[x̃′n|1∗ ]c + vxt1[q̃x|1∗ ]c + vyt1[q̃y|1∗ ]c + vzt1[q̃z|1∗ ]c +[η̃1|1∗ ]c
(3.22)
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Similarly, for x′n−2 and y′n−2:

x′n−2 =
zn[x̃′n|2∗ ]a + vxt2[q̃x|2∗ ]a + vyt2[q̃y|2∗ ]a + vzt2[q̃z|2∗ ]a +[η̃2|2∗ ]a

zn[x̃′n|2∗ ]c + vxt2[q̃x|2∗ ]c + vyt2[q̃y|2∗ ]c + vzt2[q̃z|2∗ ]c +[η̃2|2∗ ]c
(3.23)

y′n−2 =
zn[x̃′n|2∗ ]b + vxt2[q̃x|2∗ ]b + vyt2[q̃y|2∗ ]b + vzt2[q̃z|2∗ ]b +[η̃2|2∗ ]b

zn[x̃′n|2∗ ]c + vxt2[q̃x|2∗ ]c + vyt2[q̃y|2∗ ]c + vzt2[q̃z|2∗ ]c +[η̃2|2∗ ]c
(3.24)

After some primitive algebraic manipulations, these four equations become:

vx

(
t1(x′n−1[q̃x|1∗ ]c− [q̃x|1∗ ]a)

)
+ vy

(
t1(x′n−1[q̃y|1∗ ]c− [q̃y|1∗ ]a)

)
+ vz

(
t1(x′n−1[q̃z|1∗ ]c− [q̃z|1∗ ]a)

)
+

zn

(
x′n−1[x̃

′
n|1∗ ]c− [x̃′n|1∗ ]a

)
=[η̃1|1∗ ]a− x′n−1[η̃1|1∗ ]c (3.25)

vx

(
t1(y′n−1[q̃x|1∗ ]c− [q̃x|1∗ ]b)

)
+ vy

(
t1(y′n−1[q̃y|1∗ ]c− [q̃y|1∗ ]b)

)
+ vz

(
t1(y′n−1[q̃z|1∗ ]c− [q̃z|1∗ ]b)

)
+

zn

(
y′n−1[x̃

′
n|1∗ ]c− [x̃′n|1∗ ]b

)
=[η̃1|1∗ ]b− y′n−1[η̃1|1∗ ]c (3.26)

vx

(
t2(x′n−2[q̃x|2∗ ]c− [q̃x|2∗ ]a)

)
+
(

vyt2(x′n−2[q̃y|2∗ ]c− [q̃y|2∗ ]a)
)
+ vz

(
t2(x′n−2[q̃z|2∗ ]c− [q̃z|2∗ ]a)

)
+

zn

(
x′n−2[x̃

′
n|2∗ ]c− [x̃′n|2∗ ]a

)
=[η̃2|2∗ ]a− x′n−2[η̃2|2∗ ]c (3.27)

vx

(
t2(y′n−2[q̃x|2∗ ]c− [q̃x|2∗ ]b)

)
+ vy

(
t2(y′n−2[q̃y|2∗ ]c− [q̃y|2∗ ]b)

)
+ vz

(
t2(y′n−2[q̃z|2∗ ]c− [q̃z|2∗ ]b)

)
+

zn

(
y′n−2[x̃

′
n|2∗ ]c− [x̃′n|2∗ ]b

)
=[η̃2|2∗ ]b− y′n−2[η̃2|2∗ ]c (3.28)

Let us define a matrix D, with elements d11 - d44 and a column matrix ~f with elements f1 -
f4. We can rewrite (3.25)-(3.28) using the newly introduced variables as:

Eq. (3.25): vxd11 + vyd12 + vzd13 + znd14 = f1 (3.29a)

Eq. (3.26): vxd21 + vyd22 + vzd23 + znd24 = f2 (3.29b)

Eq. (3.27): vxd13 + vyd23 + vzd33 + znd34 = f3 (3.29c)

Eq. (3.28): vxd41 + vyd42 + vzd43 + znd44 = f4 (3.29d)

which results in:
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D


vx

vy

vz

zn

= f (3.30)

Finally, we have derived the equation for the unknown velocities:

~ve =


vx

vy

vz

zn

= D−1 f (3.31)

3.3.1 Uncertainty on Estimated Velocity

The velocity estimation takes 20 input arguments. The input vector can be written as:

~o =
[
~x′Tn ~x′Tn−1 ~x

′T
n−2 ~q

T
1 ~qT

2 ~αT
n−1 ~α

T
n−1
]T (3.32)

Following the definition of~o, the covariance matrix O is defined as:

O =



Σn 0 0 0 0 0 0
0 Σn−1 0 0 0 0 0
0 0 Σn−2 0 0 0 0
0 0 0 Q1 0 0 0
0 0 0 0 Q2 0 0
0 0 0 0 0 An−1 0
0 0 0 0 0 0 An−2


(3.33)

Q1 and Q2 matrices represent the covariance of the relative attitudes q̃1 and q̃2. If we define
the velocity estimator function as~ve = l(~o),~ve being the vector containing the velocities and
zn, the covariance matrix of~ve is computed as:

Vn = Jl(~o)(~o)OJl(~o)(~o)
T (3.34)

Now, we should find derivatives of l(~o) with respect to the elements of~o.
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For demonstration, let us find
∂ l(~o)
∂x′n

. We use the equivalence1 ∂D−1

∂x′n
= D−1 ∂D

∂x′n
D−1.

∂ l(~o)
∂x′n

=
∂D−1~f

∂x′n
(3.35a)

=
∂D−1

∂x′n
~f +D−1 ∂~f

∂x′n
(3.35b)

= D−1 ∂D
∂x′n

D−1~f +D−1 ∂~f
∂x′n

(3.35c)

= D−1 ∂D
∂x′n

~ve +D−1 ∂~f
∂x′n

(3.35d)

This requires the computation of derivative of D and ~f for each parameter. After these deriva-
tives are computed as shown in Appendix E, columns of the Jacobian matrix is found by using
the formula in (3.35d). The constructed Jacobian matrix is plugged into 3.34 to find Ve. Upper
left 3x3 part of Ve corresponds to the covariance matrix of vn, Vn.

3.4 Computation of Change in Attitude

The angular motion is sensed as instantaneous angular velocity by the gyroscope in three axes.
The change in attitude between two time instants can then be computed simply by integrating
the measured velocity.

Let the average gyroscope measurements in a time period of tm be represented by ~ω =
[ωx ωy ωz]

T with ω = ‖~ω‖. Let us represent the function that transforms ~ω to its quater-
nion representation~q by~q = r(~ω, tm).

q =


qs

qa

qb
qc

= r(~ω, tm) =


cos(ωtm/2)

sin(ωtm/2)ωxtm/ωtm
sin(ωtm/2)ωytm/ωtm
sin(ωtm/2)ωztm/ωtm

 (3.36)

3.4.1 Uncertainty on Change in Attitude

Since the measurements are represented in quaternions, the uncertainties on gyroscope read-
ings should be represented in resultant quaternions.

In order to transform covariance matrix Ω of ~ω to the covariance matrix Q of ~q, Jacobian
of the function r(~ω, tm) is used. The computation of this Jacobian function is presented in
Appendix B.

Q = Jr(~ω,tm)(~ω)(Ω t2
m)J

T
r(~ω,tm)(~ω) (3.37)

1 One can easily derive this equivalence by evaluating the derivative of D−1D = I.
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3.5 Inertial Measurement Vector

We define the inertial measurement vector as:

~υ =
[
~τυ ~qυ

]T (3.38)

~τυ represents the translation. It is computed as:

~τυ =~vt− 1
2

αt2 (3.39)

v is the estimated velocity and α is the accelerometer reading. Assuming their covariance is
negligible, the covariance matrix of~τυ is computed as:

Tυ =Vt2 +
1
4

At4 (3.40)

q is the rotation quaternion with covariance Q, as computed in Section 3.4. Assuming that
the covariance between the rotation and the velocity is negligible, the covariance matrix of ~υ
becomes:

ϒ =

[
Tυ 0
0 Q

]
(3.41)

3.6 Experimental Results

In this section, we analyze the performance of the inertial measurements between two visual
frames. We compute the relative pose between two frames from the ground truth and compare
the result with the relative pose estimated using the inertial readings.

Firstly we start with the translation component. As the reader can recall from Section 3.3,
relative attitude between frames is needed for translational velocity estimation. The relative
attitude can be computed via visual measurements or via gyroscope readings. Figure 3.9
shows the error distribution for two cases. Using the gyroscope readings results in a better
performance. If the bias on gyroscope readings is discarded, the gyroscope has very low
additional noise. This results in a smoother estimation of relative attitude in small time in-
tervals. On the other hand, as analyzed in Section 2.4, there may be jumps in error on visual
attitude measurements between consecutive frames. This results in poorly estimated velocity
since the attitude change is very crucial in the formulation of the velocity estimation. This
performance difference between inertial and visual relative attitude estimation results in the
performance difference seen in Figure 3.9. As a result, gyroscopes should be preferred in the
velocity estimation.

Figure (3.10) shows the error distributions for the three axes. The error on z− axis is much
higher than the other two axes. This is an expected result since we define z− axis as the
principal axis of the camera, and translation in the principal axis results in very small changes
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Figure 3.9: Distribution of the error on estimated translation when attitude change is com-
puted from the visual measurements or from the gyroscope

in visual feature positions compared to other axes. Since a tracked feature is used in the
velocity estimation, velocity estimation in the z− axis can not receive aid from the visual
tracking as much as other two axis does. Low aid from the visual part causes direct reflection
of the accelerometer error to the estimated velocity in the z−axis.

Distribution of error on relative attitude estimation is shown in Figure 3.11. Since there is
a linear relationship between gyroscope readings and estimated relative attitude, the error
distribution can be represented by a Gaussian curve, similar to the noise on the gyroscope
readings.
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CHAPTER 4

FUSING INERTIAL AND VISUAL INFORMATION FOR
ODOMETRY

In order to fuse inertial and visual pose measurements, we propose an Extended Kalman Filter
based system.

4.1 Proposed Kalman Filter

The state vector of the proposed Kalman filter,~µ , shown in (4.1), consists of eight parameters:
three for the metric position of the camera with respect to the world frame, ~τ , one for the
scaling between inertial and visual measurements, λ , and four for orientation of the camera
frame with respect to the world frame,~q.

~µn =

~τn

λ

~qn

 ; ~τn =

τx,n

τy,n

τz,n

 ; ~qn =


sn

an

bn

cn

 ; (4.1)

The constructed Kalman filter is presented in (4.2).

~̂µn = g(~µn−1,~υn) (4.2a)

M̂n = Jg(~µn−1)Mn−1JT
g (~µn−1)+ Jg(~υn)ϒnJT

g (~υn) (4.2b)

κn = M̂nCT (CM̂nCT +Φn)
−1 (4.2c)

~µn = ~̂µn +κn(~φn−C~̂µn) (4.2d)

Mn = (I8×8−κnC)M̂n (4.2e)

Here, ~µn and Mn represent the state vector and its covariance, ~̂µn and M̂n represent the pre-
dicted next state and its covariance, ~υn and ϒn represent the inertial measurement vector and
its covariance, g(~µn−1,~υn) represent prediction function, ~ψn and Ψn represent the visual mea-
surement vector and its covariance, C represents the measurement model vector and κn repre-
sents the Kalman gain.
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Computation of inertial measurements for the prediction stage ((4.2a) & (4.2b)) is detailed
in Chapter 3. Computation of visual measurements for the correction stage ((4.2c), (4.2d) &
(4.2e)) is detailed in Chapter 2.

4.1.1 The Prediction Stage

When EKF is utilized in odometry, a motion model is generally used for the prediction stage.
The motion model represents the expected motion of the device given the previous state.
Probably the most commonly used motion model is constant velocity motion model, in which
the velocity is assumed to be same as the previous state update and the state transition is
carried away based on that assumption. As a result, in the case of sudden changes in the
motion behaviour, the predicted state vector ~̂µ may not appear as a good approximation to the
state vector that is being estimated.

An alternative to constant velocity motion model is odometry motion model [85] in case there
are additional odometry measurements such as a wheel encoder. If available, measurements
from the odometry sensor can be fed to the system as if they are control inputs. This way, since
the prediction is also conducted using different measurements, based on the characteristics of
the additional odometry sensor, more reliable state predictions can be computed. As a part
of this thesis, an odometry motion model-like motion model is utilized by feeding inertial
measurements as control inputs to the constructed EKF.

The control input ~υ is defined in Section 3.5. Prediction of the state vector of the next stage
is shown in (4.2a). The nonlinear function g(~µn−1,~υ) is defined as:

~̂µn = g(~µn−1,~υn) (4.3)

~̂τn = q̃υ ,nτ̃n−1q̃∗υ ,n +λn−1~τυ ,n (4.4)

λ̂n = λn−1 (4.5)

~̂qn = q̃υ ,nq̃n−1 (4.6)

Since g(~µn−1,~υ) is a nonlinear function, it should be linearized around the current state and
the input. The Jacobians of the prediction function with respect to the previous state and the
input vector is presented below.

Jg( ~mun−1) =

 Rq̃υ
~τυ 03×4

01×3 1 01×4
04×3 04×1 Jqυ qn−1(qn−1)

 (4.7)

Jg(~υn) =

λ I3×3 Jq̃υ τ̃n−1q̃∗υ (q̃υ)
01×3 01×4
04×3 Jqυ qn−1(qυ)

 (4.8)

The Jacobian matrices Jq̃υ τ̃n−1q̃∗υ (q̃υ), Jqυ qn−1(qn−1) and Jqυ qn−1(qυ) and the rotation matrix Rq̃υ

are defined in Appendix B.
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4.1.2 The Correction Stage

While the prediction stage is nonlinear, the correction stage is linear. This results in a partially
extended Kalman filter.

The measurement vector and its covariance are computed as described in Chapter 2. The
measurement vector consists of the position and the attitude represented with a quaternion.
The C matrix that relates the state vector with the measurement vector is defined as:

~φ =C~µ =

[
I3×3 03×1 03×4
04×3 04×1 I4×4

]
~µ (4.9)

The visual correction equation does not necessarily keep the magnitude of the rotation quater-
nion part of the state unity, which results in inconsistent rotation formulas. This problem is
fixed by scaling the quaternion part of the state vector to magnitude one. Covariance matrix
is also scaled accordingly.

4.1.3 System Initialization

The initial 3D map is generated as described in Section 2.2. The scale λ is initialized as
described in Section 2.2.1.2. First pose and its covariance is set as the visual measurement
taken just after the map creation.

4.2 Experimental Results

4.2.1 Metric Scale Estimation

As described in Section 2.2.1.2, the initial 3D point locations are set with an erroneous scale.
In order to fuse inertial and visual measurements effectively, this scaling should be estimated.
The scale λ is hence included in our state. In this section, our scale estimation performance
is analyzed and compared to the scale estimation method proposed in [63].

In [63], Nutzi et al. proposes a Kalman filter with state vector consisting of the camera
position, camera velocity, camera acceleration and scale. They update the state with each
inertial and visual measurements separately. In the visual state update, camera position is
observed. In the inertial state update, acceleration is observed. Unlike the proposed method,
in the prediction state of their Kalman filter, covariance propagation is done heuristically since
there is no actual measurement in their prediction stage.

Figure 4.1 shows the estimated scale throughout time at each visual frame arrival. This figure
shows a typical result for scenarios with complex motion, consisting of rotations and small
translations, typical during an augmented reality application in small workspaces. The algo-
rithm presented in [63] fails rapidly. This is due to the accelerometer being highly erroneous
in our device, unlike the accelerometer utilized originally in the mentioned paper. As there
is a high bias on the utilized accelerometer, the velocity in the state vector of [63] diverges
rapidly, resulting in a scale estimation of almost zero. The proposed algorithm, on the other
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hand, converges to a higher scale than the true scale. This is due to the fact that the scale is
observable only through the translation component of the estimated pose. When the transla-
tion is small, it becomes harder to observe the scale and our scale estimation converges to an
erroneous value.
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Figure 4.1: Estimated scale in a video with complex motion

We also ran our scale estimation algorithm in scenarios where the camera motion includes a
continuous translation. In this case, the scale becomes much more observable and as seen in
Figure 4.2 and our scale estimation converges to a value close to the true scale in under only
100 iterations.

As illustrated in Figure 4.3, the variance on the estimated scale decreases with time. The
reason is that there is no factor increasing the uncertainty on the estimated scale since in the
prediction stage, there is no uncertainty leaking into variance of the scale. The decreasing
variance results in the scale estimation converging and eventually getting fixed. Since the
scale is set once in the beginning of the system operation as a result of the erroneously mea-
sured translation between two initial poses used for map initialization, rather than tracking
the scale throughout the system operation, we aim to determine its fixed value. This renders
the decreasing variance of the estimated scale harmless if the scale estimation does not get
fixed at an erroneous value. Hence, if there is dominantly translational motion during the first
several seconds after the system initialization, the scale converges to an acceptable value.

4.2.2 Pose Estimation

We firstly begin by comparing the effect of high noise in z− axis of the estimated velocity,
as described in Section 3.6. Figure 4.4 compares the error on position component of the state
vector when the velocity in z− axis is taken into account and discarded. As the velocity is
very noisy, when full velocity vector is used, the result has a highly varying performance. On
the other hand, discarding the z−axis results in a much smoother translation. As a result, for
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Figure 4.2: Estimated scale in a video with mostly translational motion

the rest of the tests, we will discard the velocity in z−axis.

One of the main advantages of filtering is that the result is smoother and robust to instanta-
neous erroneous measurements as it incorporates the current measurement with the previous
pose. Figure 4.5 and Figure 4.6 show a typical example of this behaviour. One can see that
the visual measurement gets corrupted for a short while towards the end of the video, but
since it is not permanent, our state vector is not affected. This is a very important strength
of the Kalman filter for its use in augmented reality applications because one of the biggest
problems in current systems is the shaky appearance of the augmented objects.

The smoothing effect of the filter, on the other hand, can not hold the system for long time
instances. Figure 4.7 and Figure 4.8 show the filter under highly erroneous visual input. The
filter maintains its previous performance when the visual performance suddenly steps up but
since the erroneous measurements keep coming persistently, the state transforms its state.

The filter and visual pose performance sometimes fluctuates, as shown in Figure 4.9 and
Figure 4.10.

On a laptop computer, the times required for one visual pose estimation iteration for different
map sizes are listed in Table 4.1. We can achieve up to 185 frames per second operation on a
laptop computer when the image stream is at 30 frames per second. This is a very promising
result for enabling real-time operation at 30 Hz on resource constrained COTS mobile devices.

When the required time for each iteration is compared to Table 2.1, one can notice that most
of the time is consumed by the visual measurement computation.
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Figure 4.3: Variance of the estimated scale in a video with mostly translational motion

Table 4.1: Average time required for system propagation for different map sizes

# of tracked points Time (ms)
20 in map, 30 total 20.97
16 in map, 24 total 14.37
12 in map, 18 total 11.40
8 in map, 12 total 8.42
6 in map, 9 total 5.38
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Figure 4.4: Position estimation performance of the Kalman filter with regular velocity esti-
mation and velocity estimation with discarded z−axis
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Figure 4.5: Position estimation performance of the Kalman filter with a map size of 16, com-
pared to the corresponding visual pose estimation
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Figure 4.6: Attitude estimation performance of the Kalman filter with a map size of 16, com-
pared to the corresponding visual pose estimation
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Figure 4.7: Position estimation performance of the Kalman filter with a map size of 8, com-
pared to the corresponding visual pose estimation
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Figure 4.8: Attitude estimation performance of the Kalman filter with a map size of 8, com-
pared to the corresponding visual pose estimation
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Figure 4.9: Position estimation performance of the Kalman filter with a map size of 20, com-
pared to the corresponding visual pose estimation
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Figure 4.10: Attitude estimation performance of the Kalman filter with a map size of 20,
compared to the corresponding visual pose estimation
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, several ways of cooperation between inertial and visual measurements are stud-
ied. Detailed computations of uncertainties on all the estimated variables are also provided.

The camera and inertial sensors of a COTS mobile device are used in the experiments. The uti-
lized inertial sensors on the mobile device have quite highly-varying bias on both accelerom-
eter and gyroscope; hence, it is difficult to include and successfully track them in the state
of the Kalman filter. Therefore, the inertial readings are only utilized in short time intervals
to predict relative pose between consecutive frames, making the effect of the bias negligible
during system operation. In spite of their low SNR and low sample rate, the inertial sensors
on the utilized mobile device are successfully used to aid the visual measurements.

The first way of cooperation included in this thesis is gyroscope-aided 2D feature tracking.
Gyroscopes are used to generate predictions for the new positions of the tracked features. This
technique is shown to reduce the distance between the initial and final positions of a feature in
the KLT algorithm and hence increase the robustness of the tracking. Based on experiments,
as shown in Figure 2.7, gyroscope aided 2D tracking initiates the iterative KLT tracking al-
gorithm successfully, which yields less number of iterations. Other than the inertial aid, the
uncertainty modelling in 2D tracking is analyzed. The employed uncertainty modeling of 2D
feature positions makes the system independent of parameter tuning in terms of covariance
computation. Although this is not confirmed by simulations, this is a trivial fact.

In any kind of 3D reconstruction or pose estimation scenario, generation of the initial 3D
map or initial pose is crucial. In the proposed simple technique described in Section 2.2, it is
shown that an initial estimation for a translation-only pose and its corresponding 3D structure
could be obtained with an acceptable performance. The constraint on rotation-free camera
motion that it is trapped to a single dimension during the map initialization is observed not
to be crucial based on experimental results. The initial map generation inevitably creates a
scaling error between the metric position and the visually estimated position of the camera
due to the noisy accelerometer readings. In order to eliminate the effects of the initial scaling
error, the scale is inserted into the state vector of the constructed Kalman filter. Based on
the experimental results, the unknown scale converges to an acceptable value in case of a
dominant translation in the camera motion. However, for a complex motion, although the
proposed scale estimation performs better than the state of the art [63], the scale may converge
to an incorrect value.

The experiments on the effect of map size on translation and rotation error indicate that de-
creasing the map size increases the variation of the error.
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The proposed Kalman filter is fed with inertially measured translation and rotation in the pre-
diction stage. In order to compute the relative translation using inertial measurements, the
velocity of the camera should somehow be estimated. Based on [35], it can be shown that
the translational velocity can be estimated without a double integration of the accelerometer
readings of without tracking the velocity with the Kalman filter. Our experiments showed
that the required rotation estimation for the velocity estimation formulation should be utilized
from gyroscopes rather than the visual pose estimation. It should be noted that the z− axis
velocity estimation error is highly varying. The camera motion towards the principal axis of
the camera does not yield a high motion of the tracked points on the image plane. This re-
sults in insufficient visual aid in the z−axis velocity estimation, resulting in a highly-varying
estimation error.

The computational load of the proposed system is shown to be very low. By sacrificing from
robustness against possibly erroneous 3D locations of the points in the map and decreasing
the number of features tracked, we can achieve up to 185 Hz operation on a laptop computer,
which is quite promising for real-time operation at 30 Hz on a mobile device and is very
impressive when compared to state-of-the-art.

Kalman filter is a powerful yet delicate tool. Covariance matrices of the initial state and
measurement vectors affect the performance of the filter dramatically. One of the biggest
advantages of the proposed system is that, unlike state of the art methods such as [46], covari-
ance propagation is conducted without the use of any heuristics. Obtaining the estimate of
the predicted covariance in a theoretically complete way is a big advantage of using inertial
measurements in the prediction stage of the Kalman filter.

Performance of the visual pose estimation is damaged severely by erroneously initiated 3D
locations of the tracked points. In this thesis, we focused on ways to improve visual pose
estimation using the inertial readings. In order to increase the performance of visual pose
estimation and hence the overall performance of the proposed Kalman filter, again a filter
based approach to handle the 3D point locations and covariances can be developed. As real-
time operation on resource constrained systems will not allow a filter that contains 3D point
locations to run at the video frame rate of 30 Hz, construction of a PTAM-like system that
runs two filters in parallel may be beneficial. One of the two filters shall be the proposed filter
for pose estimation operating at the video rate and the other one a filter that keeps track of the
sparse map at a lower frame rate.
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APPENDIX A

KALMAN FILTER

Kalman filter, proposed by R.E. Kalman in 1960, is an estimation method that makes use
of state representation and state transition to propagate a linear system obtaining optimal
estimation error [28], and can be seen as an extension of the Wiener filtering theory [12].

It is used to combine two estimates of a quantity optimally in order to find an estimate with
minimal uncertainty [86]. In this chapter, a brief introduction to and formulation of Kalman
filter and extended Kalman filter is presented. For a more detailed analysis and mathematical
derivation, readers are referred to [85]. For a simpler, intuitive explanation of Kalman filters,
readers are referred to [15].

Kalman filter makes use of the state-space representation. This representation takes the output
of the system as system states [12]. Because of their similarities, it can be considered as a
state-space version of Recursive Least Squares (RLS) filtering [12].

Kalman filter propagates a stochastic state - the state is represented by a probability density
function. This probability density function is parametrized as a Gaussian distribution and
described by a mean vector and a covariance matrix.

Definitions and formulations in the rest of this chapter are mainly based on [85].

A.1 Kalman Filter

As discussed above, Kalman filter is used to combine two full or partial estimates of the state
vector. Each iteration of a Kalman filter consists of two stages: state transition or prediction
and measurement update or correction.

In the state transition stage, a hypothesis for the next state is generated. Previous state vector
and its covariance are the input of this stage with optional user control input vector. Kalman
filter requires a linear prediction function, such as (A.1).

~µn = An~µn−1 +Bn~υn +~εn (A.1)

Here,~µn−1 and~µn represents the previous and current state vector, ~υn represents the user con-
trol input and~εn is a zero-mean Gaussian random vector modeling the uncertainty introduced
by state transition with covariance ϒ. An and Bn are matrices that maps the previous state and
the control input to the next state, respectively.
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The measurement update stage combines the hypothesis generated in the state transition stage
and combines it with an observation of the state, called measurement. It is also characterized
by a linear function, shown in (A.2).

~φn =Cn~µn +~ηn (A.2)

~φn represents the measurement and ~ηn is a zero-mean Gaussian random vector modeling the
uncertainty in the measurement with covariance Φ. Cn is a matrix that maps the state to the
measurement vector.

Since the defined functions are linear in their arguments and the arguments are Gaussian
random vectors, estimated new state is also a Gaussian [79].

The prediction for the next state and its covariance is computed as:

~̂µn = An~µn−1 +Bn~υn (A.3a)

M̂n = AnMn−1AT
n +ϒn (A.3b)

M represents the covariance of the state vector and the variables with represents that they are
prediction of the regular ones.

The power of Kalman filter lies in the Kalman gain. Kalman gain (κn) specifies how the pre-
diction ~̂µn and the measurement ~φn is combined to get the next state vector ~µ . It is computed
as in (A.4a).

κn = M̂nCT
n (CnM̂nCT

n +Φn)
−1 (A.4a)

~µn = ~̂µ +κn(~φ −Ct~̂µn) (A.4b)

Mn = (I−κnCn)M̂n (A.4c)

(A.4b) and (A.4c) shows the propagation of predicted and measured mean vector and covari-
ance to the new state estimate.

A.2 Extended Kalman Filter

The requirement of linear state propagation and measurement update functions in Kalman
filter limit the applicability of the filter in many vision and robotics applications. To be able
to utilize Kalman filter in nonlinear estimation problems, extended Kalman filter (EKF) is
formulated.

In the case of nonlinear state transition and measurement update functions, estimated new
state is no longer a Gaussian. EKF computes a Gaussian approximation to the resultant
probability density function. Consider two nonlinear functions, g and h, representing state
transition and measurement update functions respectively, as shown in (A.5). Computation of

64



the new mean of the state is straightforward and done by evaluating the functions at the input
variables. In order to propagate the covariance matrices, functions are linearized using Taylor
expansion as shown in (A.6).

~µn = g(~µn−1,~υn)+ εn (A.5a)
~φn = h(~µn)+ηn (A.5b)

g(~µn,~υn)≈ g(~µn−1,~υn)+ Jg(~µn−1,~υn)(~µn−1)(~µ−~µn−1) (A.6)

Jg(~µ,~υn)(~µ) represents the Jacobian of the function g(~µ,~υn) with respect to ~µ . With the same
linearization applied to the function h(~µn), extended Kalman filter can be formulated as:

~̂µn = g(~µn−1,~υn) (A.7a)

M̂n = Jg(~µn−1,~υn)(~µ)Mn−1Jg(~µ,~υn)(~µ)
T +ϒn (A.7b)

κn = M̂nJh(~µ)(~µ)
T (Jh(~µ)(~µ)M̂nJh(~µ)(~µ)+Φn)

−1 (A.7c)

~µn = ~̂µ +κn(~φ −h(~µn) (A.7d)

Mn = (I−κnJh(~µ)(~µ))M̂n (A.7e)

Due to the matrix inversion in the computation of the Kalman gain, the complexity of EKF is
O(n2), n being the state dimension [85]. Hence, especially for resource limited environments,
the state vector should be kept as small as possible for real-time operation.
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APPENDIX B

QUATERNIONS FOR REPRESENTING ROTATIONS

Quaternions, considered as "the most brilliant formulation of the four-parameter method" by
Robinson [70], is an extension to the complex number system where a quaternion is charac-
terized by one real and three imaginary parameters firstly developed by W.R. Hamilton [20].
They constitute an important role in mathematics, computer vision and computer graphics and
their invention was once described by James Clerk Maxwell as "a step towards the knowledge
of quantities related to space which can only be compared, for its importance, with the inven-
tion of triple coordinates by Descartes" [56].

A quaternion is defined as

q̃ = qs +qai+qb j+qck

where qs, qa, qb and qc are real numbers and i, j and k are characterized as

i2 =−1, i j =− ji = k

j2 =−1, jk =− jk = i

k2 =−1, ki =−ik = j

For ease of notation, we use the following representations interchangeably:

qs +qai+qb j+qck = q̃⇔~q =


qs

qa

qb
qc

 (B.2)

Given two quaternions q̃1 = q1,s + q1,ai+ q1,b j + q1,ck and q̃2 = q2,s + q2,ai+ q2,b j + q2,ck,
addition and subtraction of two quaternions are straightforward.

q̃1 + q̃2 = (q1,s +q2,s)+(q1,a +q2,a)i+(q1,b +q2,b) j+(q1,c +q2,c)k

q̃1− q̃2 = (q1,s−q2,s)+(q1,a−q2,a)i+(q1,b−q2,b) j+(q1,c−q2,c)k (B.3a)

67



Multiplication of two quaternions is defined as their Hamiltonian product. Making use of the
multiplication rules for three imaginary components, the multiplication is defined as:

q̃3 = q̃1q̃2 ⇒

s3 = q1,sq2,s−q1,aq2,a−q1,bq2,b−q1,cq2,c
a3 = q1,sq2,a +q1,aq2,s +q1,bq2,c−q1,cq2,b
b3 = q1,sq2,b−q1,aq2,c +q1,bq2,s +q1,cq2,a
c3 = q1,sq2,c +q1,aq2,b−q1,bq2,a +q1,cq2,s

(B.4)

Norm of a quaternion is defined as:

‖q̃‖=
√

q2
s +q2

a +q2
b +q2

c (B.5)

Inverse of a quaternion is then defined as:

q̃∗ q̃−1 = 1 ⇒ q̃−1 =
qs−qai−qb j−qck

‖q‖
(B.6)

Two special cases of quaternions that are of interest in scope of this thesis are unit quaternion,
defined as a quaternion with unit norm, and pure quaternion, defined as a quaternion with zero
real part [1].

Notice that the inverse of a unit quaternion is equal to the complex conjugate of that quater-
nion, q̃−1 = q̃∗.

Unit quaternions can be used to represent rotations around an arbitrary axis. Let us have
a point 3D point p with coordinates px, py and pz. When we define an axis of rotation as
a unit pure quaternion ũ = xui + yu j + zuk and magnitude of rotation in radians as θ , the
corresponding quaternion representing that rotation is defined as q̃ = cos(θ/2)+ sin(θ/2)u
[90, 1]. Then, the rotation can be formulated according to Hamilton-Cayley formula [57] as:

P̃′ = q̃P̃q̃−1 (B.7)

where P̃ is defined as the pure quaternion representing the point p, P̃ = pxi+ py j+ pzk. P̃′ is
the pure quaternion representing the rotated point, p′.

B.1 Transformation between Rotation Quaternions and Rotation Matrices

A rotation in three dimensions can be represented by an orthogonal 3×3 matrix R with unit
determinant. A rotation quaternion can be transformed to a rotation matrix by representing the
Hamilton-Cayley formula with a matrix. The resultant formula is called the Euler-Rodrigues
formula [57].

P̃′ = q̃P̃q̃−1

p′ = Rp
⇒ R =

q2
s +q2

a−q2
b−q2

c −2qsqc +2qaqb 2qsqb +2qaqc

2qsqc +2qaqb q2
s −q2

a +q2
b−q2

c −2qsqa +2qbqc

−2qsqb +2qaqc 2qsqa +2qbqc q2
s −q2

a−q2
b +q2

c

 (B.8)
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For the inverse transformation, one can obtain (B.9) and (B.10) from (B.8) [57].

q2
s = (1+ r11 + r22 + r33)/4 (B.9a)

q2
a = (1+ r11− r22− r33)/4 (B.9b)

q2
b = (1− r11 + r22− r33)/4 (B.9c)

q2
c = (1− r11− r22 + r33)/4 (B.9d)

qsqa = (r32− r23)/4 (B.10a)

qsqb = (r13− r31)/4 (B.10b)

qsqc = (r21− r12)/4 (B.10c)

qaqc = (r13 + r31)/4 (B.10d)

qaqb = (r21 + r12)/4 (B.10e)

qbqc = (r32 + r23)/4 (B.10f)

Notice that signs of the quaternion parameters is ambiguous. One can set a sign for one of
the four parameters using one of the equations in (B.9) and set the others using (B.10). In
this thesis, for numerical stability, firstly, all parameters are computed using (B.9). Then, the
largest one selected and the others are recomputed using (B.10).

B.2 Angular Displacement Represented in Quaternions

Relative attitude between two time instances can be represented or measured - by a gyroscope,
for instance - as angular displacements in three axes separately.

Let the change in attitude be represented by:

~θ =

θx

θy

θz

 (B.11)

where θx, θy and θz represent change in attitude for three axes in radians. The small angle
between two attitudes is found as:

θ = ‖~θ‖ (B.12)

The corresponding quaternion is computed as [86]:
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~q =


qs

qa

qb
qc

=


cos(θ/2)

sin(θ/2)θx/θ

sin(θ/2)θy/θ

sin(θ/2)θz/θ

 (B.13)

B.3 Related Jacobians

Jacobian of the q̃1q̃2 with respect to q̃1 is computed as:

Jq̃1q̃2(q̃1) =


q2,s −q2,a −q2,b −q2,c
q2,a q2,s q2,c −q2,b
q2,b −q2,c q2,s q2,a
q2,c q2,b −q2,a q2,s

 (B.14)

Similarly, Jacobian of the q̃1q̃2 with respect to q̃2 is computed as:

Jq̃1q̃2(q̃1) =


q1,s −q1,a −q1,b −q1,c
q1,a q1,s −q1,c q1,b
q1,b q1,c q1,s −q1,a
q1,c −q1,b q1,a q1,s

 (B.15)

If we want to take the Jacobian of the rotation P̃′ = q̃P̃q̃−1 with respect to q̃, we have to define
∂P′

∂qξ

for ξ = s,a,b,c individually:

∂P′

∂qs
=

 2qs −2qc 2qb
2qc 2qs −2qa

−2qb 2qa 2qs

P = Rs,q̃P (B.16)

∂P′

∂qa
=

2qa 2qb 2qc

2qb −2qa −2qs

2qc 2qs −2qa

P = Ra,q̃P (B.17)

∂P′

∂qb
=

−2qb 2qa 2qs

2qa 2qb 2qc

−2qs 2qc −2qb

P = Rb,q̃P (B.18)

∂P′

∂qc
=

−2qc −2qs 2qa

2qs −2qc 2qb
2qa 2qb 2qc

P = Rc,q̃P (B.19)

Then the Jacobian of the rotation becomes:

Jq̃Pq̃(q̃) =
[
Rs,q̃P Ra,q̃P Rb,q̃P Rc,q̃P

]
(B.20)
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The Jacobian of the change-in-attitude to quaternion transformation with respect to change-
in-attitude is:

J~θ→q̃(
~θ) =



−θx sin(θ/2)
2θ

−
θy sin(θ/2)

2θ
2(θ 2

y +θ 2
z )sin(θ/2)+θ 2

x θ cos(θ/2)
2θ 3

1
2 θxθy

θ cos(θ/2)−2sin(θ/2)
θ 3

1
2 θxθy

θ cos(θ/2)−2sin(θ/2)
θ 3

2(θ 2
x +θ 2

z )sin(θ/2)+θ 2
y θ cos(θ/2)

2θ 3

1
2 θxθz

θ cos(θ/2)−2sin(θ/2)
θ 3

1
2 θyθz

θ cos(θ/2)−2sin(θ/2)
θ 3

−θz sin(θ/2)
2θ

1
2 θxθz

θ cos(θ/2)−2sin(θ/2)
θ 3

1
2 θyθz

θ cos(θ/2)−2sin(θ/2)
θ 3

2(θ 2
x +θ 2

y )sin(θ/2)+θ 2
z θ cos(θ/2)

2θ 3


(B.21)

B.4 Advantages of Using Quaternions for Representing Rotations

Other than quaternions, one of the most common ways to represent rotations is Euler angles
[90]. There are three Euler angles:

• Pitch: Rotation angle about the x-axis.

• Yaw: Rotation angle about the y-axis.

• Roll: Rotation angle about the z-axis.

Because visualization of rotation in Euler angles is very convenient, this representation is
widely used. There are two main advantages of quaternions over Euler angles, though, and
these advantages lured us into utilizing quaternions in our system rather than Euler angles.

Firstly, it is shown in [83], a 3-dimensional representation of rotation can not be global and
non-singular simultaneously. Being non-singular, Euler angle representation suffers from
being unable to represent certain rotations in special conditions. This situation is called gimble
lock and is one of the biggest shortcomings of this representation [90]. Quaternions, on the
other hand, with one additional parameter, proves to be both global and non-singular [83].

The other main advantage of quaternions for representing rotations is their numerical accuracy
[70]. The detailed analysis conducted in [70] concludes that, in case of unrestricted rotations
about an arbitrary axis, numerical accuracy of quaternions is considerably higher.
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APPENDIX C

MULTIVIEW GEOMETRY BASICS

C.1 Pinhole Camera Model

To transform the points in 3D space to the image coordinates, we employ the pinhole camera
model. In this appendix, basic definitions of the entities used throughout the thesis is provided.

U

C

x

Image plane

Y

X

Z

f

y

c u

Figure C.1: Pinhole camera model. Here, U is the point in 3D, u is the projection of the 3D
point on the image plane, f is the focal distance, C is the camera center and c is the principal
point.

Pinhole camera model models the camera as a point in space, and the location of the projection
of a 3D point on the image plane is determined by a ray passing through the 3D point and the
camera center as seen in Figure C.1 [22].

The distance from the camera center to the image plane is called the focal distance and rep-
resented by f . Although it is not shown in Figure C.1, the focal distance for the image
coordinate axes x and y can be different. If this is the case, corresponding focal distances are
denoted by fx and fy.

The point where the line, which is perpendicular to the image plane and also passes through
the camera center, intersects with the image plane is called the principal point and represented
by c. The location of c on the image plane is~c =

[
cx cy

]
.

When the 3D point U is represented on camera coordinates, u is computed as:
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z

ux

uy

1

=

 fx 0 cx

0 fy cy

0 0 1

UX

UY

UZ

= K

UX

UY

UZ

 (C.1)

z represents a scaling constant that transforms u from homogeneous coordinates to the actual
image coordinates. Here, K is called the camera calibration matrix. There are techniques and
tools in the literature to determine the calibration matrix of a camera, such as [98].

Points in 3D space are usually represented in the world coordinate frame, which is usually
different from the camera coordinate frame. In this case, in order to project the 3D point
onto the image plane, its coordinates should be transformed to the camera coordinates. If we
denote the location of the camera center in the world coordinates as ~C and the rotation from
the world frame to the camera frame with 3×3 rotation matrix R, the point UW in the world
coordinates can be represented in camera coordinates as:

UX

UY

UZ

= R(~UW −~C) =
[
R −R~C

]
UW

X
UW

Y
UW

Z
1

 (C.2)

We can denote −RC with~t representing the translation from the camera center to the world
center in the camera coordinate frame. If we plug in the previous equation to the projection
equation, we get:

z

ux

uy

1

= K
[
R ~t

]
UW

X
UW

Y
UW

Z
1

= P


UW

X
UW

Y
UW

Z
1

 (C.3)

P, which contains all the information to project a point in the world coordinates to the image
plane, is called the projection matrix.

C.2 Triangulation

Triangulation is a process to determine the 3D location of a point from its observations in at
least two images taken with different camera poses.

Let us denote the 3D point with unknown location by ~U and its two observations by ~u1 and
~u2 such that~u1 = P1~U and~u2 = P2~U . Using these equalities, we can get:

~u1×P1~U = 0 (C.4a)

~u2×P2~U = 0 (C.4b)
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These two equations give us four constraints for four homogeneous coordinates of the 3D
point [22]. These equations can be solved using the homogeneous Direct Linear Transforma-
tion (DLT) method or by inhomogeneous method as detailed in [22].
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APPENDIX D

COMPUTATION OF JACOBIAN OF 3D-TO-2D PROJECTION
FUNCTION

The function that maps 3D point coordinates Xi, Yi and Zi to the image coordinates xi and yi

is defined as:

[
xi

yi

]
= p(~φ ,~Xi)→ zi

xi

yi

1

= K(q̃X̃ q̃−1 +~τ) (D.1)

In order to compute Jacobian of the projection function
[

xi

yi

]
= p(~φ ,~Xi) with respect to the

visual measurement vector ~φ = [τx,τy,τz,qs,qa,qb,qc]
T , let us define~e as:

~e =

e1
e2
e3

= q̃X̃ q̃−1 +~τ (D.2)

Then, the definitions of xi and yi is simplified to:

xi = fx
e1

e3
+ cx (D.3a)

yi = fy
e2

e3
+ cy (D.3b)

where fx, fy, cx and cy are elements of camera calibration matrix K defined in Appendix C.

Computation of Jacobian of~e with respect to ~φ is rather straightforward.

J~e(~φ) =
[
I3×3 Jq̃Xq̃∗(q̃)

]
(D.4)

Jq̃Xq̃∗(q̃) is defined in Appendix B.20. If we shortly represent J~e(q̃) with J and its elements
with J(r,c), the Jacobian Jp(~φ ,~Xi)

(~φ) becomes:
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Jp(~φ ,~Xi)
(~φ) =



fx

e3
0

0
fy

e3

− fxe1

e2
3

−
fye2

e2
3

fx
J(1,4)e3− e1J(3,4)

e2
3

fy
J(2,4)e3− e2J(3,4)

e2
3

fx
J(1,5)e3− e1J(3,5)

e2
3

fy
J(2,5)e3− e2J(3,5)

e2
3

fx
J(1,6)e3− e1J(3,6)

e2
3

fy
J(2,6)e3− e2J(3,6)

e2
3

fx
J(1,7)e3− e1J(3,7)

e2
3

fy
J(2,7)e3− e2J(3,7)

e2
3



T

(D.5)
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APPENDIX E

COMPUTATION OF JACOBIAN OF MATRICES USED IN
METRIC VELOCITY ESTIMATION

The equation relating the velocity vector with matrix D and ~f , defined in Section 3 is:

D


vx

vy

vz

zn

= ~f (E.1)

This equation is derived from the four equations presented below.

vxt1(x′n−1[q̃x|1∗ ]c− [q̃x|1∗ ]a)+ vyt1(x′n−1[q̃y|1∗ ]c− [q̃y|1∗ ]a)+ vzt1(x′n−1[q̃z|1∗ ]c− [q̃z|1∗ ]a)+

zn(x′n−1[~x
′
n|1∗ ]c− [~x′n|1∗ ]a) =[~η1|1∗ ]a− x′n−1[~η1|1∗ ]c (E.2)

vxt1(y′n−1[q̃x|1∗ ]c− [q̃x|1∗ ]b)+ vyt1(y′n−1[q̃y|1∗ ]c− [q̃y|1∗ ]b)+ vzt1(y′n−1[q̃z|1∗ ]c− [q̃z|1∗ ]b)+

zn(y′n−1[~x
′
n|1∗ ]c− [~x′n|1∗ ]b) =[~η1|1∗ ]b− y′n−1[~η1|1∗ ]c (E.3)

vxt2(x′n−2[q̃x|2∗ ]c− [q̃x|2∗ ]a)+ vyt2(x′n−2[q̃y|2∗ ]c− [q̃y|2∗ ]a)+ vzt2(x′n−2[q̃z|2∗ ]c− [q̃z|2∗ ]a)+

zn(x′n−2[~x
′
n|2∗ ]c− [~x′n|2∗ ]a) =[~η2|2∗ ]a− x′n−2[~η2|2∗ ]c (E.4)

vxt2(y′n−2[q̃x|2∗ ]c− [q̃x|2∗ ]b)+ vyt2(y′n−2[q̃y|2∗ ]c− [q̃y|2∗ ]b)+ vzt2(y′n−2[q̃z|2∗ ]c− [q̃z|2∗ ]b)+

zn(y′n−2[~x
′
n|2∗ ]c− [~x′n|2∗ ]b) =[~η2|2∗ ]b− y′n−2[~η2|2∗ ]c (E.5)

Following the equations (E.2) - (E.5), the matrix D, with elements d11 - d44 and the column
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matrix ~f with elements f1 - f4 is then defined as:

Eq. (3.25): vxd11 + vyd12 + vzd13 + znd14 = f1 (E.6a)

Eq. (3.26): vxd21 + vyd22 + vzd23 + znd24 = f2 (E.6b)

Eq. (3.27): vxd13 + vyd23 + vzd33 + znd34 = f3 (E.6c)

Eq. (3.28): vxd41 + vyd42 + vzd43 + znd44 = f4 (E.6d)

The function to compute the velocity vector is defined as:


vx

vy

vz

zn

= D−1 f = l(~o) (E.7)

with the input vector~o being:

~o =
[
~x′Tn ~x′Tn−1 ~x

′T
n−2 ~q

T
1 ~qT

2 ~αT
n−1 ~α

T
n−1
]T (E.8)

As described in Section 3, we need to find derivatives of D and ~f with respect to the elements
of the input vector. In this chapter, we present these derivatives.

Let us firstly define the derivative of a rotation operation with respect to quaternion parame-
ters. Rotating a point with a quaternion is conducted as:

P′ = qPq−1 = RP (E.9)

(B.8) shows the equivalent rotation matrix. The derivatives of P′ with respect to the quaternion
parameters qs, qa, qb and qc are presented in (B.16) - (B.19). We will denote the quaternion

representing
∂P′

∂qs
as J̃P′(qs).

Now, the partial derivatives are presented.

∂D
∂x′n

=


0 0 0 d11/t1
0 0 0 d21/t1
0 0 0 d31/t1
0 0 0 d41/t1

 (E.10)

∂D
∂y′n

=


0 0 0 d12/t1
0 0 0 d22/t1
0 0 0 d32/t1
0 0 0 d42/t1

 (E.11)
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∂D
∂x′n−1

=


t1[q̃x|1]c t1[q̃y|1]c t1[q̃z|1]c [~xn|1]c

0 0 0 0
0 0 0 0
0 0 0 0

 (E.12)

∂D
∂y′n−1

=


0 0 0 0

t1[q̃x|1]c t1[q̃y|1]c t1[q̃z|1]c [~xn|1]c
0 0 0 0
0 0 0 0

 (E.13)

∂D
∂x′n−2

=


0 0 0 0
0 0 0 0

t2[q̃x|2]c t2[q̃y|2]c t2[q̃z|2]c [~xn|2]c
0 0 0 0

 (E.14)

∂D
∂y′n−2

=


0 0 0 0
0 0 0 0
0 0 0 0

t2[q̃x|2]c t2[q̃y|2]c t2[q̃z|2]c [~xn|2]c

 (E.15)

For ξ = {s,a,b,c},

∂D
∂q′1,ξ

=


t1(x′n−1[J̃q̃x|1∗ (q1,ξ )]c− [J̃q̃x|1∗ (q1,ξ )]a) t1(x′n−1[J̃q̃y|1∗ (q1,ξ )]c− [J̃q̃y|1∗ (q1,ξ )]a)

t1(y′n−1[J̃q̃x|1∗ (q1,ξ )]c− [J̃q̃x|1∗ (q1,ξ )]b) t1(y′n−1[J̃q̃y|1∗ (q1,ξ )]c− [J̃q̃y|1∗ (q1,ξ )]b)

0 0
0 0

t1(x′n−1[J̃q̃z|1∗ (q1,ξ )]c− [J̃q̃z|1∗ (q1,ξ )]a) x′n−1[J̃~xn|1∗ (q1,ξ )]c− [J̃~xn|1∗ (q1,ξ )]a
t1(y′n−1[J̃q̃z|1∗ (q1,ξ )]c− [J̃q̃z|1∗ (q1,ξ )]b) y′n−1[J̃~xn|1∗ (q1,ξ )]c− [J̃~xn|1∗ (q1,ξ )]b

0 0
0 0


(E.16)

∂D
∂q′2,ξ

=


0 0
0 0

t2(x′n−2[J̃q̃x|2∗ (q2,ξ )]c− [J̃q̃x|2∗ (q2,ξ )]a) t2(x′n−2[J̃q̃y|2∗ (q2,ξ )]c− [J̃q̃y|2∗ (q2,ξ )]a)

t2(y′n−2[J̃q̃x|2∗ (q2,ξ )]c− [J̃q̃x|2∗ (q2,ξ )]b) t2(y′n−2[J̃q̃y|2∗ (q2,ξ )]c− [J̃q̃y|2∗ (q2,ξ )]b)

0 0
0 0

t2(x′n−2[J̃q̃z|2∗ (q2,ξ )]c− [J̃q̃z|2∗ (q2,ξ )]a) x′n−2[J̃~xn|2∗ (q2,ξ )]c− [J̃~xn|2∗ (q2,ξ )]a
t2(y′n−2[J̃q̃z|2∗ (q2,ξ )]c− [J̃q̃z|2∗ (q2,ξ )]b) y′n−2[J̃~xn|2∗ (q2,ξ )]c− [J̃~xn|2∗ (q2,ξ )]b


(E.17)
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∂D
∂α ′(n−1,x)

=
∂D

∂α ′(n−1,y)
=

∂D
∂α ′(n−1,z)

=
∂D

∂α ′(n−2,x)
=

∂D
∂α ′(n−2,y)

=
∂D

∂α ′(n−2,z)
= 0 (E.18)

∂~f
∂x′n

=
∂~f
∂y′n

= 0 (E.19)

∂~f
∂x′n−1

=


−[~η1|1∗ ]c

0
0
0

 (E.20)

∂~f
∂y′n−1

=


0

−[~η1|1∗ ]c
0
0

 (E.21)

∂~f
∂x′n−2

=


0
0

−[~η2|2∗ ]c
0

 (E.22)

∂~f
∂y′n−2

=


0
0
0

−[~η2|2∗ ]c

 (E.23)

For ξ = {s,a,b,c},

∂~f
∂q′1,ξ

=


0
0

−(1
2 t2

1 + t1t3)([q̃∗2J̃αn−1(q1,ξ )q̃2]a− xn−2[q̃∗2J̃αn−1(q1,ξ )q̃2]c)

−(1
2 t2

1 + t1t3)([q̃∗2J̃αn−1(q1,ξ )q̃2]b− yn−2[q̃∗2J̃αn−1(q1,ξ )q̃2]c)

 (E.24)

∂~f
∂q′2,ξ

=


0
0

−(1
2 t2

1 + t1t3)([J̃αn−1|1(q2,s)]a− xn−2[J̃αn−1|1(q2,s)]c)

−(1
2 t2

1 + t1t3)([J̃αn−1|1(q2,s)]b− yn−2[J̃αn−1|1(q2,s)]c)

 (E.25)

∂~f
∂α ′(n−1,x)


−1

2 t2
1

0
([qx|3∗ ]a− x′n−2[qx|3∗ ]c)(

1
2 t2

1 + t1t3)
([qx|3∗ ]b− x′n−2[qx|3∗ ]c)(

1
2 t2

1 + t1t3)

 (E.26)
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∂~f
∂α ′(n−1,y)


0
−1

2 t2
1

([qy|3∗ ]a− x′n−2[qy|3∗ ]c)(
1
2 t2

1 + t1t3)
([qy|3∗ ]b− x′n−2[qy|3∗ ]c)(

1
2 t2

1 + t1t3)

 (E.27)

∂~f
∂α ′(n−1,z)


1
2 t2

1 xn−1
1
2 t2

1 yn−1

([qz|3∗ ]a− x′n−2[qz|3∗ ]c)(
1
2 t2

1 + t1t3)
([qz|3∗ ]b− x′n−2[qz|3∗ ]c)(

1
2 t2

1 + t1t3)

 (E.28)

∂~f
∂α ′(n−2,x)


0
0
−1

2 t2
3

0

 (E.29)

∂~f
∂α ′(n−2,y)


0
0
0
−1

2 t2
3

 (E.30)

∂~f
∂α ′(n−2,z)


0
0

1
2 t2

3 xn−2
1
2 t2

3 yn−2

 (E.31)
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