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Figure 1: We present a framework to turn a landscape photograph (left) into a layered game texture (right) with parallax effect.
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1 INTRODUCTION
Art assets for games can be time intensive to produce. Whether it is
a full 3D world, or simpler 2D background, creating good looking
assets takes time and skills that are not always readily available.
Time can be saved by using repeating assets, but visible repeti-
tion hurts immersion. Procedural generation techniques can help
make repetition less uniform, but do not remove it entirely. Both
approaches leave noticeable levels of repetition in the image, and
require significant time and skill investments to produce. Video
game developers in hobby, game jam, or early prototyping situa-
tions may not have access to the required time and skill. We propose
a framework to produce layered 2D backgrounds without the need
for significant artist time or skill. In our pipeline, the user provides
segmented photographic input, instead of creating traditional art,
and receives game-ready assets. By utilizing photographs as input,
we can achieve both a high level of realism for the resulting back-
ground texture as well as a shift from manual work away towards
computational run-time which frees up developers for other work.
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2 PIPELINE
Our proposed framework consists of four building blocks. We show
an overview of the pipeline in Figure 2:

Depth-based interactive segmentation. As a first step, we segment
the input photograph into depth layers to later apply the parallax
effects. In our examples, we generate depth estimates using [Mian-
goleh et al. 2021]. Both the MiDaS [Ranftl et al. 2020] and LeRes [Yin
et al. 2021] version provide useful information that complement
each other during segmentation. We decide to choose the best of
both for each layer individually. We then apply a soft threshold on
the depth map to define the desired depth range for each layer. The
adjusted depth map can then be used directly as a segmentation
mask for the input image. Alternatively, segmented images from
other sources can be used or segments from different images can be
mixed. To ease the next processes and increase the visual quality of
the resulting texture, we apply manual retouching on the separated
layers. We also crop the bottom of each layer such that it is flat to
avoid unnecessary data.

Palette simplification and editing. We reduce the input colors to
create the pixelation effect. We use the k-means clustering algo-
rithm to extract dominant colours. We empirically found that eight
dominant colours are usually sufficient to describe a landscape pho-
tograph and set this as default for k. The colors are then reduced by
mapping them to the colors of the palette using the k-means labels.
Apart from color simplification, palette extraction also opens up
the possibility to change the output colors via GUI input. We show
a recolored example in Figure 3.

Naïvely changing and reducing to the colour palette, however,
tends to produce "salt and pepper" noise which degrades the quality
of our outputs.We therefor apply a bilateral filter to reduce the noise
without blurring the key features of our image. The images then
get scaled down to further cluster pixels and enforce the pixelation
effect. We decide to use a scaling factor of 3 for our experiments,
meaning that every 3x3 pixel window will be merged. Note that
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Figure 2: The main steps of our pipeline: a) Depth-based interactive segmentation. b) Down scaling and recolouring. c) Graphcut
texture generation. d) Up scaling.

Figure 3: We show an example of our color reduction. The
RGB input (left) is analyzed to retrieve the palette (middle).
This can then be edited to produce the recolored result (right).

Figure 4: We show a texture generation example with the
input segment (top) and the generated texture (bottom).

this parameter largely depends on the game design. We therefor
encourage users to experiment different factors to suit their need.

Graphcut texture generation. We apply the graph cut based ap-
proach introduced by [Kwatra et al. 2003] to extend each layer
to the required length. The input image is divided into patches
which are then shuffled and recombined to produce an extended
texture. Where patches overlap, the edges are adaptively changed
in shape to create the most subtle edge transition possible. The
visual quality can be influenced by adjusting the order and sizes of
patches placed. Larger patches provide greater image coherency,
while smaller patches produce a less repetitive result. We show a
resulting texture in Figure 4.

Up scaling. The generated images are lastly up scaled to the
target resolution which completes the pixelation process, and can
then be imported into a game engine. We make use of the depth
estimation again as a guide to position the layers in depth and
control the parallax effect.

We show a final result in Figure 5. Our approach manages to
create a convincing background. The mountain range and the trees
are widely extended without visible seams or obvious repetitions.

Figure 5: We show a fully processed result with in-game
geometry in the foreground.

The texture has an artistic, pixelated style without losing important
features and thus keeps a realistic impression.

3 CONCLUSION
Our method successfully produces 2D side-scrolling game back-
ground from landscape photos. Our pipeline effectively lowers the
entry barrier for game developers and changes "artist time" to com-
putational runtime. Without prior artistic knowledge, users are
able to produce believable backgrounds with relatively minor effort,
making it a useful asset for independent game developers.
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