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In this supplementary document, we provide:
(i) Additional qualitative examples showcasing the performance

of our scale-invariant (SI) depth estimation model in Section A.
Please refer to Figure 1, 4, and 3, which serve as an extension to
Figures 1, 2, 3, and 6 of the main document.

(ii) Further qualitative examples highlighting the capabilities of
our scale and shift-invariant (SSI) depth estimation model in Sec-
tion B.1. For additional insights, refer to Figure 5, 6, and 7, extending
the content presented in Figure 5 of the main document.

(iii) Elaboration on the training details of our SSI depth estima-
tion network in Section B.2.

(iv) An expanded discussion on the limitations of our work in
Section C.

(v) A detailed network complexity and runtime analysis compar-
ing our method to state of the art in Section D.

(vi) An extension to Table 2 of the main paper providing extra
metrics in Table 1.

A SI DEPTH ESTIMATION - ADDITIONAL
RESULTS

We extend Figures 1, 2, 3, and 6 of the main document and present
additional qualitative results of our scale invariant depth estimation
in Figure 1, 4, and 3.

In Figure 4, we present visualizations of the estimated depth
maps produced by our method alongside those of other state-of-
the-art baselines. MD [Li and Snavely 2018], MC [Li et al. 2019],
and VNI [Yin et al. 2019] attempt to directly estimate SI depth
from the RGB input. As depicted in Figure 4, these approaches
are limited to providing an overall scene structure with blurry
object boundaries and significant details are missing. LeRes [Yin
et al. 2021], leveraging the generalizability of SSI depth, achieves
more robust results. However, our method employs a second high-
resolution forward path from the SSI network, supplying local
details that contribute to highly detailed SI-depth estimations.

For a clearer assessment of the quality of the estimated depth
maps generated by our method compared to LeReS, we present
projected point clouds using the estimated depth in Figure 3, along-
side the ground truth 3D point cloud. This figure illustrates that
our method adeptly captures the shape of the scene and success-
fully recovers intricate details, showcasing its ability to faithfully
reproduce the scene’s geometry.

Furthermore, we extend our comparison to complex and diverse
in-the-wild scenes provided in Figure 6 of the main paper in Fig-
ure 1 presenting both the depth maps and projected 3D point clouds
in comparison to LeReS. Our depth maps accurately capture the
intricate geometry of the scenes, exhibiting precise depth disconti-
nuities and placements. In contrast, LeReS struggles to faithfully

reconstruct the shape of these complex scenes due to numerous
missing details.

B SSI DEPTH ESTIMATION
B.1 Extra results
Figures 6 and 7 serve as extensions to Figure 5 in themain document,
depicting the quality of our SSI depth estimation in comparison to
state-of-the-art baselines. Our approach, leveraging a combination
of dense SSI and ordinal sparse training, produces finer details
compared to all other baselines, including the larger transformer-
based MiDaS DPT [Ranftl et al. 2021].

Transformer-based SSI MDE methods lack the boostability ob-
served in CNN-based backbones using the boosting framework of
BMD [Miangoleh et al. 2021]. The attention mechanism in trans-
formers enables them to process and relate local features in the
images independent of the resolution and spatial distance of the
features. This eliminates the limitation posed by the receptive field
of CNN-based approaches. As a result, as also demonstrated by oth-
ers [Miangoleh 2022], transformer performance cannot be boosted
by optimizing their input resolution, which is how BMD [Miangoleh
et al. 2021] proposes to boost SSI MDE methods. This is while, the
utilized CNN backbone of our SSI depth model, enables boostability.
Figure 6 and 7 also illustrate that our method produces significantly
finer details when boosted, outperforming even boosted versions
of other CNN-based baselines like MiDaS Resnext101 [Ranftl et al.
2020] and SGR [Xian et al. 2020].

B.2 Training details
Since SSI loss involves a least-square fitting it can destabilize the
training in the first iterations as the number of outlier is high. To
stabilize the training we warm-start the ordinal depth network with
∼ 5𝐾 images by randomly sampling 20 images per scene in the
Hypersim [Roberts et al. 2021] dataset by optimizing the L1 loss
for one epoch. Next, we continue our training with all the depth
datasets (Hypersim [Roberts et al. 2021], OpenRooms [Li et al. 2021],
Replica [Straub et al. 2019], Replica [Straub et al. 2019]+GSO [Choi
et al. 2016], FSVG [Krähenbühl 2018], TartanAir [Wang et al. 2020],
HRWSI [Xian et al. 2020], and Holopix50K [Hua et al. 2020]) and
using the combination of our ordinal and SSI loss defined in Section
4 of the main document. We construct a batch size by uniformly
sampling images from every dataset and set the batch size to 16.
To crop the input image for training, we follow the setup proposed
inMiangoleh et al. [2021] to compute theR0 size for the input image
to ensure no pixel in the image is far away from the contextual
cues (e.g., depth edges). We then randomly crop from between the
receptive size and R0 and resize to 384×384, to match the receptive
field of the network. We randomly apply horizontal flip, color jitter,
Gaussian blur, and grayscale data augmentation operations for
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Table 1: Extension to Table 2 of the main document. Quantitative evaluation of metric depth estimation methods. These
networks often inaccurately estimate depth due to focal length mismatch without scale matching. Accurate results are achieved
only after scale adjustment (denoted by †).

Methods Middlebury iBims-1
Structure and Shape Surface Normal Edges Structure and Shape Surface Normal Edges

RMSE ↓ Abs. ↓ 𝛿1 ↑ ∠ Dist ↓ % wtn 𝑡◦ ↑ D3R ↓ RMSE ↓ Abs. ↓ 𝛿1 ↑ ∠ Dist ↓ % wtn 𝑡◦ ↑ D3R ↓ 𝜀accDBE ↓ 𝜀
comp
DBE ↓

Metric3D 218.6 186.8 58.9 53.5 26.1 0.443 0.60 17.5 79.5 19.3 57.4 0.463 2.32 15.8
Zoedepth 229.8 169.4 22.1 52.1 27.4 0.245 0.80 16.8 71.6 24.7 41.9 0.368 2.29 15.3
PatchFusion 223.7 150.3 22.4 53.8 25.6 0.076 0.86 20.9 58.4 29.7 29.0 0.230 1.87 19.63
Metric3D † 51.7 45.6 50.8 52.2 26.9 0.400 0.46 8.35 92.5 19.3 57.7 0.440 2.34 14.1
Zoedepth † 47.2 43.4 56.8 50.4 28.9 0.239 0.51 7.96 92.4 22.9 47.6 0.369 2.36 13.8
PatchFusion † 42.9 40.4 58.1 53.8 25.6 0.076 0.57 9.24 91.2 27.8 33.7 0.248 1.87 19.6
Ours SI 41.3 34.0 55.4 58.4 24.1 0.215 0.69 11.7 86.7 26.9 35.1 0.342 1.69 16.0

better generalization. During training, we match the scale and shift
of the predicted ordinal estimate with the ground truth disparity
using the least-squares criterion. In addition, we set the disparity
to zero for sky regions in outdoor datasets.

C LIMITATION DISCUSSION
Our method focuses on generating highly-detailed, high-resolution
scale-invariant depth estimations. The quality of our estimations,
however, depends on the quality of the input images. For images at
very low-resolutions, or for noisy images, our method may fail to
generate sharp results. This mainly comes from our high-resolution
ordinal input failing to give accurate depth discontinuities in the
case of image noise. We demonstrate this in Figure 2, where our
method starts to fail when a high amount of noise is introduced to
the image.

D NETWORK COMPLEXITY AND RUNTIME
ANALYSIS

For our SSI-network, we adopt the same CNN-based architecture
and pretrainingweights asMiDaS [Ranftl et al. 2020] and LeReS [Yin
et al. 2021]. This results in evaluation consistency and allows us
to exploit boostable properties of CNNs as shown by Miangoleh
et al. [2021]. Our objective is to generate high-resolution results.
Hence, we need to train the SI-network at high-resolutions. Despite
the potential advantages of a transformer architecture for our SI-
network, the resource-intensive nature of training transformers at
high-resolutions led us to choose a CNN with a large receptive field
to avoid global structural issues.

The high-resolution SSI-depth we generate relies on the context-
aware resolution selection process of 𝑅20, designed by Miangoleh
et al. [2021]. As this value depends on the image content, our SSI-
depth estimation inference happens at different resolutions, hence
different runtimes for each image. Consequently, we will report
all the runtimes as an average on the high-resolution Middlebury
dataset in Table 2 computed on a single Nvidia RTX 2080 GPU.

LeReS [Yin et al. 2021] and Zoedepth [Bhat et al. 2023] generate
results at a smaller resolution of 448 and 512 respectively compared
to the 1024 for our method. This contributes to their faster runtimes
as they are processing smaller images. Metric3D [Yin et al. 2023]

Table 2: Network Architecture and runtime analysis. Run-
times are reported as the average time that each model takes
to process images from Middlebury2014 dataset on a single
Nvidia RTX 2080 GPU.

Methods Runtime (seconds) Number of parameters (millions)
Metric3D [Yin et al. 2023] 0.6 200
Zoedepth [Bhat et al. 2023] 1 300
PatchFusion [Li et al. 2024] 180 700
LeReS [Yin et al. 2021] 2.5 130
Ours 3 180

achieves a more efficient runtime despite having an inference reso-
lution of 1088, thanks to its single forward pass. But this comes with
the loss of many details and poor depth discontinuity performance.
Patchfusion [Li et al. 2024], employes a brute-force patch-based
approach, which contributes to its huge runtime.

Table 2 also summarizes that the CNN based network archi-
tecture utilized in Our method, LeReS, and Metric3D needs less
parameters compared to the much larger transformer-based archi-
tectures of Zoedepth and PatchFusion.
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Figure 1: Extension to Figure 6 of the main paper. The figure depicts the in-the-wild performance of our model in accurately
modeling the scene compared to LeRes [Yin et al. 2021]. Our model is able to model the 3D shape of various scenes with different
depth distributions at a high resolution and with precise boundary accuracy.

Image credits: @Spacejoy, Death to the Stock Photo, @James McDonald
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Figure 2: Our high-resolution SSI estimate suffers from artifacts on images with noise as seen in the “High-res (R20)” estimate
for both noisy images. This sensitivity to image quality and noise for high-resolution estimation leads to a noisy input for the
SI network affecting its performance in recovering details. Image credits: iBims-1 dataset [Koch et al. 2018].

Figure 3: Figure shows samples of our scale-invariant depth estimation and projected point clouds in comparison to LeRes [Yin
et al. 2021]. Our method is able to capture the small holes in the object as emphasized in the figure while LeRes generates
limited details and fails to predict a correct scene shape. Image credits: Middlebury dataset [Scharstein et al. 2014]
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Figure 4: Extension to Figure 3 of the main paper. Qualitative comparison of scale-invariant networks on the Middlebury
dataset [Scharstein et al. 2014]. Our scale-invariant network exhibits superior performance in capturing intricate objects with
higher levels of depth details compared to the state-of-the-art.

Figure 5: Extension to Figure 5 of the main paper. Qualitative comparison of scale and shift invariant networks in-the-wild
reveals that our SSI network produces crisp depth boundaries compared to other methods. The results of our high-resolution
boosted model exhibit even more refined depth boundaries.
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Figure 6: Extension to the Figure 5 of the main paper. Qualitative comparison of scale and shift invariant networks on iBims-
1 [Koch et al. 2018] dataset reveals that our SSI network produces crisp depth boundaries compared to other methods. The
results of our high-resolution boosted model exhibit even more refined depth boundaries.
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Figure 7: Extension to the Figure 5 of the main paper. Qualitative comparison of scale and shift invariant networks on
Middlebury [Scharstein et al. 2014] dataset reveals that our SSI network produces crisp depth boundaries compared to other
methods. The results of our high-resolution boosted model exhibit even more refined depth boundaries.
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