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Fig. 1. Visualization of our lighting optimization process. For a given input image, we first extract the diffuse-only image using CID. We then initialize an
environment map and a grid of point lights in Mitsuba. We optimize the values of both the environment map and the point lights. The third column shows the
optimized environment map, and point light positions visualized as red spheres. The last column shows our rendered version of the scene after optimization.
Image from Unsplash by Nathan Van Egmond
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1 SUPPLEMENTARY RESULTS AND FIGURES
In Figure 1, we show an example scene with visualized lighting
parameters from our differentiable optimization process. We provide
example inputs and outputs for our network in Figures 2 and 3 and
a set of training data pairs in Figure 4. Finally, we provide results
from our two numerical experiments.

1.1 Quantitative Comparisons
In order to evaluate the efficacy of both our lighting optimization
and neural renderer, we perform a quantitative evaluation using
the BigTime dataset [Li and Snavely 2018] against two prior works,
ICLight [Zhang et al. 2025] and RGB⇔X [Zeng et al. 2024]. The
BigTime dataset consists of time-lapse sequences depicting vari-
ous scenes under time-varying lighting conditions. This means that
pairs of images can be sampled from each scene to represent a source
and target relighting pair. For our experiment, we sampled 2 image
pairs from each scene in the BigTime dataset, resulting in 424 pairs.
For our method, we extract our PBR representation from the source
image and run our lighting optimization to extract the lighting con-
figuration of the target image. We then run the optimized scene
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Table 1. We perform two numerical evaluation of our method: 1) a quanti-
tative experiment using time-lapse data from the BigTime dataset, 2) a user
study comparing subjective performance on environment map relighting.
We evaluate our method against two diffusion-based relighting methods;
RGB⇔X [Zeng et al. 2024] and ICLight [Zhang et al. 2025]

BigTime User Study
Method MSE ↓ SSIM ↑ Avg. Rank ↓ Rank 1 % ↑
RGB⇔X 0.0322 0.544 2.54 6.6
ICLight 0.0366 0.544 2.12 18.0
Ours 0.0225 0.643 1.33 75.3

representation through our neural renderer to compare it to the
ground truth target image. For RGB⇔X, we feed the intrinsic com-
ponents from the source image and the irradiance from the target
image to their image generator. For ICLight, we input the source
image and supply our optimized shading as the lighting condition.
For both competing methods, we compute scale-invariant metrics
between the target image and the generated output to account for
any scale ambiguity. The results of the experiment are summarized
in Table 1. We observe that RGB⇔X generally fails to reproduce
the expected appearance of the scene from its intrinsic components,
even when provided with the irradiance extracted from the target
image. While ICLight can often apply the novel lighting condition,
it typically fails to remove the original lighting from the input.

1.2 User Study
For the user study, we collected a set of environment maps and
in-the-wild photographs to create 20 different examples. We con-
dition both competing methods using our rendered shading and
provide a prompt describing both the scene and the illuminating
environment. Each participant is asked to rank the 3 results from
best to worst based on two criteria: 1) accuracy of lighting with
respect to the environment map and 2) photorealism/naturalness
of the result. Each of the twenty examples showed the input image,
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Fig. 2. Example inputs and estimated relighting from our neural render for in-the-wild examples
Images from Unsplash by Md. Shafaat Hossain (living room) and Suzanne Boureau (fruit)

Albedo Edge map Rendered image Target

Fig. 3. Example training inputs and ground-truth targets. The input rendered image is created using our differentiable rendering optimization.
Images from Unsplash by Tyler Moore and Charlotte Cowell

the environment map, and the result of each method in a random-
ized order. We provide these image collages, as well as the method
ordering in the supplementary material. We fielded responses from
45 participants. The average ranking for each method is given in
Table 1. Among all responses, ours was ranked as the first choice
75% of the time, while ICLight was chosen as the top choice in 18%
of comparisons.
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Fig. 4. Example ground truth and optimized rendered images. The left side represents the original image, and the right is the result of our lighting optimization.
Images from Unsplash by Buğra Şıkel (pillars), Clay Banks (wood wall), Kate Darmody (lamp), Huy Phan (blue couch), Lisa Anna (blue wall), Mircea Solomiea (crosswalk), mos
design (japan), Raimond Klavins (castle), Prateek Katyal (books)
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