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Physically Controllable Relighting of Photographs

CHRIS CAREAGA and YAĞIZ AKSOY, Simon Fraser University, Canada

Fig. 1. We present a photograph relighting method that enables explicit control over light sources akin to CG pipelines. As the examples show, users can insert
different types of light sources, such as spot lights, point lights, or environmental illumination into the scene. We achieve this in a pipeline involving mid-level
computer vision, physically-based rendering, and neural rendering. We introduce a self-supervised training methodology using differentiable rendering to
train our neural renderer with real-world photograph collections for in-the-wild generalization. Images from Unsplash by Patti Black (car) and Heinrich Hansen -
courtesy of The Cleveland Museum of Art (church).

We present a self-supervised approach to in-the-wild image relighting that
enables fully controllable, physically based illumination editing. We achieve
this by combining the physical accuracy of traditional rendering with the
photorealistic appearance made possible by neural rendering. Our pipeline
works by inferring a colored mesh representation of a given scene using
monocular estimates of geometry and intrinsic components. This represen-
tation allows users to define their desired illumination configuration in 3D.
The scene under the new lighting can then be rendered using a path-tracing
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engine. We send this approximate rendering of the scene through a feed-
forward neural renderer to predict the final photorealistic relighting result.
We develop a differentiable rendering process to reconstruct in-the-wild
scene illumination, enabling self-supervised training of our neural renderer
on raw image collections. Our method represents a significant step in bring-
ing the explicit physical control over lights available in typical 3D computer
graphics tools, such as Blender, to in-the-wild relighting.
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1 INTRODUCTION
Illumination is an essential component of image formation. Com-
puter graphics pipelines, more specifically physically-based ren-
dering (PBR) engines such as Blender [Roosendaal et al. 2024] and
Unreal Engine [Sweeney et al. 2022], offer full control over light
sources in the 3D scene and use ray tracing to model the interactions
between illumination and geometry. With the ability to simulate
different types of light sources, such as environmental, diffuse, di-
rectional, projected, or point, they allow unconstrained control over
the scene illumination in a CG environment.

Although image relighting has been widely studied in the litera-
ture, computational photography methods have consistently failed
to offer a similar unconstrained control over illumination for in-the-
wild photographs. This stems from the complexity of modeling the
interactions between illumination and the 3D scene in real-world
image formation and the lack of real-world ground truth. As a result,
prior interactive image relighting methods use simplified illumina-
tion conditions such as an HDRI environment [Sengupta et al. 2019]
or offer indirect control over light through scribbles [Choi et al.
2024], using a second image for light conditioning [Xing et al. 2024],
or text-based descriptions [Zeng et al. 2024a].

In this work, we bring the capability of physical control over light
sources to the relighting of in-the-wild photographs. We achieve
this by combining a physically based rendering engine with a feed-
forward neural renderer. Given an input image, our pipeline starts
with monocular geometry estimation [Wang et al. 2024] and intrin-
sic decomposition [Careaga and Aksoy 2024] that together allow us
to partially recreate the scene as a textured mesh in a 3D rendering
environment. This step enables full control over the illumination
in the scene where the user can freely define light sources or envi-
ronmental illumination using interactive tools such as Blender or
frameworks such as Mitsuba [Jakob et al. 2022]. Our system first
renders an initial image through ray tracing using the customized
scene illumination. Given this initial CG rendering, our neural ren-
derer generates the final photorealistic result. Figure 2 shows an
overview. While it is possible to render an approximate rendition
of the scene under a given illumination, creating a photorealistic
relighting requires a neural renderer that can model real-world
appearance under custom illuminations. While generating train-
ing pairs under known different illumination conditions is possible
using 3D assets, synthetic datasets fail to reflect the complex appear-
ance and variety of real-world photographs. Real-world capture of
paired data requires expensive photography systems in studio condi-
tions, failing to provide the wide variety of scenes and illumination
conditions required for in-the-wild generalization.
Our main contribution in this paper is the self-supervised train-

ing strategy we develop for our neural renderer. We introduce an
optimization formulation that can replicate the existing illumina-
tion in a given image in a PBR environment using differentiable
rendering. This enables us to use any real-world photograph as our
ground-truth output, and generate the corresponding input pair for
training only from illumination-invariant scene properties and light
simulation. We use diverse real-world photograph collections to
train our neural renderer to generate a realistic relighting result
given the initial physical simulation of light.

By combining the expressiveness of PBR with the photorealism of
neural rendering, our forward pipeline can render a wide variety of
light sources, such as point lights, spotlights, and diffuse lights, that
can be explicitly defined in the 3D space in addition to environmental
illumination. As demonstrated in Figures 1 and 5, our relighting
pipeline can create realistic results for in-the-wild photographs for
a wide variety of images under different lighting conditions.

2 RELATED WORK
Image relighting has been widely studied in the computational pho-
tography literature, offering different formulations and interactive
interfaces, albeit in constrained scenarios. In this section, we provide
a loose categorization of related works to provide a brief overview.

Supervised image relighting. The single-image relighting litera-
ture consists of a large number of problem formulations. Due to
the inherent difficulty of the problem, prior works focus on specific
imagery and relighting scenarios to constrain the task. Existing
methods often make trade-offs between editability and controllabil-
ity when representing the target lighting configuration. To combat
the underconstrained nature of the problem, many prior works fo-
cus on the multi-view variation of the relighting problem [Gardner
et al. 2024; Philip et al. 2021; Rudnev et al. 2022; Wang et al. 2023],
relying on multiple captures of a given scene. Works that tackle the
single-image relighting problem constrain the domain of expected
inputs, for example, focusing on portraits and objects [Hou et al.
2024; Mei et al. 2023; Pandey et al. 2021; Ren et al. 2024]. The meth-
ods rely on expensive data-capture systems such as light stages.
This studio-captured data constrains their lighting representation
to environmental lighting only. Similar methods have been trained
using rendered data [Bharadwaj et al. 2024; Griffiths et al. 2022; Jin
et al. 2024; Yeh et al. 2022; Zeng et al. 2024b], but this comes at the
cost of photorealism in the generated result. Attempts have been
made to alleviate this data deficiency by leveraging supervision
from multi-illumination [Poirier-Ginter et al. 2024; Xing et al. 2024;
Zhang et al. 2024], or multi-view [Philip et al. 2019; Yu et al. 2020]
data. While capturing this type of data for real images is possible,
the scenes are limited to static environments in specific scenarios.
We formulate the relighting problem as a combination of phys-

ically based rendering (PBR) and neural rendering, which allows
us to train our neural renderer in a self-supervised manner where
training pairs can be generated from any photograph. As a result,
our method can generate realistic relighting results in a wide variety
of scenes without requiring specialized dataset capture setups.

Inverse rendering for relighting. A crucial step to relighting is re-
moving the original illumination from the input scene. This step can
either be performed implicitly in an end-to-end fashion [Bharadwaj
et al. 2024; Jin et al. 2024; Zeng et al. 2024b] or by first decomposing
the image into its intrinsics in an explicit inverse rendering step
[Choi et al. 2024; Mei et al. 2023; Pandey et al. 2021; Xing et al.
2024; Yu et al. 2020]. Intrinsic decomposition and inverse rendering
are long-standing problems where a variety of image formation
models are adopted by different methods. Similar to the relighting
literature, most methods focus their efforts on specific scene types
such as indoor images [Kocsis et al. 2024; Li et al. 2020; Luo et al.
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Fig. 2. During inference, our pipeline first extracts PBR quantities using two off-the-shelf mid-level vision estimators (CID and MoGe). We use these
representations to build a colored mesh of the scene. The user can then create their desired lighting environment in 3D editing software like Blender. We use
Monte-Carlo rendering to create a rough approximation of the scene and run it through our self-supervised neural renderer to generate the final result.

2024; Sengupta et al. 2019; Zeng et al. 2024a; Zhu et al. 2022b,a],
outdoor scenes [Yu and Smith 2021], or portraits [Wang et al. 2022;
Zhang et al. 2022]. Inverse rendering alone is not enough to re-
light an image, as the target illumination has to be applied to the
illumination-invariant representations of scene. Several works make
use of a neural rendering step to combine intrinsic components with
a lighting representation for relighting. The methods by Sengupta
et al. [2019] and Careaga et al. [2023] utilize an environment map
along with estimated albedo and surface normals to re-render the
input. While this allows them to customize environmental illumina-
tion, their use of surface normals for geometry makes it challenging
to render realistic shadows.

Interactive image relighting. Zeng et al. [2024a] and Luo et al.
[2024] propose an end-to-end diffusion approach for inverse ren-
dering and neural re-rendering, where their neural renderer takes
all available intrinsics as raw input to generate the final result. In
order to generate a novel relighting, the user can omit the shad-
ing layer and provide a natural language description of the de-
sired lighting. Instead of explicit intrinsics, Xing et al. [2024] utilize
illumination-dependent and -independent latent descriptors. By
swapping the illumination-dependent information of one image
with the illumination-independent information from another scene,
they demonstrate lighting transfer between two scenes. The meth-
ods of Choi et al. [2024] and Mei et al. [2023] develop interactive
approaches for indoor relighting by allowing a user to annotate the
input image with scribbles to hint at the desired lighting conditions.

As is the case for Choi et al. [2024], Zeng et al. [2024a], and others,
rendering the final image directly from intrinsic maps or latent
representations makes the task of their neural renderers challenging,
while also constraining their input light representation to be indirect,
such as scribbles or text prompts. Our method, on the other hand,
uses PBR to model the image formation through ray tracing. This
makes the design of the target 3D environment explicit, enabling
the user to experiment within a familiar CG environment with
physically intuitive control over illumination. Moreover, since we
model the image formation already through PBR, this simplifies the
task of our neural renderer to simply bridge the gap between the
PBR image and real-world appearance. The efficiency of our pipeline,

which combines PBR and neural rendering, enables illumination
editing at interactive speeds.

3 PHYSICALLY CONTROLLABLE RELIGHTING
We introduce a single-image relighting pipeline that brings the
physical control over light sources present in computer graphics
pipelines to in-the-wild realistic photograph editing. In order to al-
low users to control the illumination in a 3D rendering environment,
our first task is to create a representation for the input photograph
that can be used by physically-based rendering (PBR) engines to
render the scene under customizable illumination. This requires an
illumination-invariant 3D geometric representation of the scene.

In order to recreate in-the-wild photographs inside a rendering en-
gine, wemake use of twomid-level vision approaches that have been
specifically designed for in-the-wild generalization. We model the
scene geometry using the monocular geometry estimation method
MoGe by Wang et al. [2024]. MoGe estimates a geometrically accu-
rate 3D point cloud and camera parameters, from a single image,
and has been shown to accurately represent complex scenes both
indoors and outdoors. We estimate the diffuse reflectance for the
input image using the colorful intrinsic decomposition method CID
by Careaga and Aksoy [2023, 2024]. CID decomposes its input 𝐼 into
3 intrinsic layers using the intrinsic residual model:

𝐼 = 𝐴 × 𝑆 + 𝑅, (1)

where 𝐴 represents the diffuse reflectance or albedo, 𝑆 represents
the diffuse RGB shading, and the residual layer 𝑅 includes all non-
diffuse components such as specularities. CID can generate intrinsic
decompositions at high resolutions and has been shown to accu-
rately represent the diffuse reflectance and shading colors in mixed-
illumination environments both indoors and outdoors.

We generate a mesh using a 3D point cloud from MoGe by trian-
gulating the positions of neighboring pixels. We combine our mesh
with the diffuse reflectance colors from CID to create a textured
mesh that can readily be used by rendering engines. Note that both
the geometry and the reflectance are illumination-invariant proper-
ties. We load this illumination-invariant 3D scene representation
into a rendering engine in which the user can define new light
sources in the scene.
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Fig. 3. Overview of our self-supervised training process. For a given image, we first generate illumination-invariant PBR components, namely, albedo and
geometry using off-the-shelf methods[Careaga and Aksoy 2024; Wang et al. 2024]. We use these representations to generate a colorful 3D mesh of the
scene. Using differentiable rendering implemented by Mitsuba, we recover the lighting configuration of the original scene by re-rendering it from the
illumination-invariant representations. We then train a neural rendering network to recover a photorealistic rendition of the scene from the CG-rendered
approximation. By removing and recovering the illumination of a single scene, we can train our neural rendering network completely with self-supervision.

Image from Unsplash by Sanju Pandita.

Although this combination of MoGe and CID allows us to gener-
ate 3D scene representation for in-the-wild photographs, it is still
an incomplete representation lacking some characteristics that a
full CG pipeline requires for photorealistic rendering. One missing
component is a result of the monocular view of the scene where
only the surfaces visible from the camera can be reconstructed. This
results in an incomplete mesh of the scene as shown in Figure 2,
where occluded regions are omitted in the 3D point cloud estimated
by MoGe. Due to the lack of neighboring pixels at depth discon-
tinuities, the generated mesh also fails to represent surfaces close
to occlusion boundaries. Similarly, CID provides the illumination-
invariant diffuse reflectance but combines all non-diffuse effects
in the residual layer which cannot be used to assign non-diffuse
surface properties. While diffuse reflectance can still successfully
simulate secondary illumination coming from colored surfaces, it
fails to represent specular surfaces or refractive objects. Due to a
lack of reliable BRDF estimation methods in the literature for in-the-
wild photographs, our 3D representation only allows us to render a
diffuse image.
In our relighting pipeline, we task our neural renderer to com-

pensate for the shortcomings of our 3D textured mesh coming from
monocular views to generate photorealistic final results. As outlined
in Figure 2, we render an initial image via PBR using tools such as
Blender or Mitsuba that allow the user to customize the illumination

environment. This initial rendering serves as the input to our neural
renderer which generates the final realistic image.
Our neural renderer needs to be trained on real-world ground-

truth data in order to render a realistic result complete with non-
diffuse effects. In the next section, we outline the self-supervised
training pipeline that we formulate using PBR and differentiable
rendering.

4 SELF-SUPERVISED NEURAL RENDERING
The main task of our neural renderer is to generate a realistic image
that reflects the appearance of real-world photographs given an
initial PBR render. To get our neural renderer to successfully model
real-world appearance, we need to train it with real-world pho-
tographs as ground-truth. In this section, we detail our method of
generating input PBR rendering and output real-world appearance
pairs for training using only a set of photographs.
In order to use a photograph 𝐼 as the ground-truth appearance,

we need to generate a PBR version of the scene under the existing
illumination. Similar to our forward pipeline outlined in Section 3,
we use MoGe [Wang et al. 2024] and CID [Careaga and Aksoy 2024]
to create a textured mesh𝑀 for 𝐼 . Given the geometry and diffuse
reflectance, we are only missing the light sources to create our
initial rendering using ray-tracing. We now detail our optimization
over the 3D illuminating environment that will act as a stand-in for
user-defined lighting during training.
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4.1 Optimization via Differentiable Rendering
Given an input image 𝐼 and the illumination-invariant texturedmesh
𝑀 , our goal is to use a ray tracer pbr to render the best approximation
of 𝐼 that our incomplete monocular estimation of𝑀 allows. For this
purpose, we formulate the 3D lighting environment estimation as
an optimization problem.

4.1.1 Target variable. As noted in Section 3, our 3D representation
𝑀 only models diffuse reflectance. This makes it challenging to use
the original image 𝐼 as the target variable of our optimization, as 𝐼
includes non-diffuse effects. This is because non-diffuse effects such
as specularities typically result in very bright regions in the image,
skewing our optimization. Instead, we use the diffuse image as our
target variable during optimization. CID allows us to obtain the
diffuse image 𝐷 using the diffuse reflectance 𝐴 and diffuse shading
𝑆 as defined in Equation 1:

𝐷 = 𝐴 × 𝑆. (2)

4.1.2 Unknown variables. Without loss of generality, we represent
the unknown 3D lighting environment Ψ as a combination of an
environmental illumination 𝐸 and a set of point light sources P =

{®𝑝𝑖 |𝑖 ∈ {1, 2, ..., 𝐾}}:
Ψ = {𝐸,P}, (3)

where 𝐸 > 0 is a high dynamic range image (HDRI) map. The
point light sources ®𝑝𝑖 ∈ R6 are defined as the concatenation of
non-negative RGB intensities and unconstrained 3D locations.

4.1.3 Objective function. Our objective is to reconstruct the diffuse
image 𝐷 as closely as possible using the input textured mesh𝑀 in a
PBR environment by optimizing over the 3D lighting environment
Ψ. Formally, our objective function can be defined as:

𝑒 (𝐷,𝑀,Ψ) =
∑︁
∀𝑖∈V

∑︁
{𝑟,𝑔,𝑏}

(𝐷𝑖 − pbr(𝑀,Ψ)𝑖 )2 , (4)

where pbr(𝑀,Ψ) is the physically-based rendering operation and
V is the set of valid pixels in our rendering, excluding holes coming
from the monocular geometry estimation.

4.1.4 Optimization. We fit the 3D lighting environment Ψ to best
match the original diffuse image through nonlinear optimization:

Ψ∗ = argmin
Ψ

𝑒 (𝐷,𝑀,Ψ) (5)

and use the optimized lighting Ψ∗ to create our initial diffuse ren-
dering 𝐷̃ = pbr(𝑀,Ψ∗) that will serve as the input to our neural
renderer during training.We solve this nonlinear minimization prob-
lem using the differentiable renderer Mitsuba 3 [Jakob et al. 2022]
and the gradient-based Adam optimizer [Kingma and Ba 2015].

4.1.5 Parameters. We define our environmental illumination 𝐸 as
a 128 × 256 HDRI RGB map and define 𝐾 = 16 point light sources.
This results in a 98400-dimensional optimization over Ψ, 16× 6 = 98
variables representing the 16 point light sources and the rest coming
from 𝐸. We determine the resolution for pbr(𝑀,Ψ) by setting the
longer dimension of the image to 512 pixels while maintaining the
original aspect ratio. We resize𝐷 to compute 𝑒 at this resolution. We
initialize 𝐸 as a constant gray image at 0.5, set the RGB intensities
of ®𝑝𝑖 at the same value, and position the 16 point lights in a 4 × 4

regular grid at the center of the scene. We generate pbr(𝑀,Ψ) with
ray tracing in Mitsuba using a bounce depth of 3 representing up to
the first-bounce indirect illumination with 16 samples per pixel for
Monte-Carlo rendering. We use the initial learning rate of 0.01 for
Adam. It takes on average 20 seconds per image to optimize for Ψ
on an NVIDIA A40 GPU.

4.1.6 Discussion. Although we are optimizing over 3D lighting
parameters, it should be noted that our main goal with this opti-
mization is to reconstruct𝐷 as faithfully as possible in our simplified
PBR environment. In order to transfer user-defined illumination
conditions into a photorealistic image, we expect the neural ren-
derer to remain faithful to its input rendering in terms of diffuse
lighting. This is to simplify the task of our neural renderer into
only modeling the domain gap between physically-based diffuse
rendering and real-world appearance.
Our choice of a low-resolution target HDRI and modeling non-

environmental lighting only as a small set of point lights are moti-
vated by the limitations of our 3D representation of the scene and the
nonlinearity of our optimization problem. We generate our textured
mesh𝑀 used as the implicit variable in our optimization using com-
puter vision methods MoGe [Wang et al. 2024] and CID [Careaga
andAksoy 2024].WhileMoGe can accuratelymodel complex geome-
tries in the wild, it falls short in creating a high-precision geometry
at high resolutions. Combined with the inherent incompleteness of
monocular geometry in occluded areas and occlusion boundaries,
our mesh𝑀 only roughly approximates the full 3D geometry. CID
can accurately generate high-resolution reflectance in the wild, but
it can only model the diffuse reflectance as a variable that can be
used for PBR. Diffuse-only rendering can still model the colorful
illumination in the scene including multi-bounce indirect light, but
makes it challenging to infer high-resolution environmental lighting
due to the lack of direct reflections and specularities.

The computation of our objective function involves rendering the
scene via PBR. As a result, the optimization requires a differentiable
renderer. Mitsuba 3 [Jakob et al. 2022] is a differentiable rendering
system that makes it possible to compute the partial derivatives for
many independent variables. Although Mitsuba supports various
types of illumination sources, we find that the combination of an
environment and point light sources allows our optimized lighting
to approximate many different illumination conditions, without
creating an unstable optimization process.

We define our optimization over the HDRI environment intensi-
ties, point light source intensities, and point light source locations.
With its 128 × 256 resolution, the HDRI map constitutes a majority
of the optimized variables. However, thanks to the linearity and
the superposition properties of illumination, both HDRI and point
light intensities create little nonlinearity in the PBR-based gradients,
making the high-dimensionality of the optimization process more
manageable. The 3D locations of the point light sources, however,
make our objective function 𝑒 highly nonlinear. This nonlinearity
comes from the complex interactions between light sources and
the geometry, such as cast shadows. As a result, our optimization
gets prone to local minima as we increase 𝐾 as Figure 4 shows.
Our choice of using a 4 × 4 grid of 16 point lights reflects the best
reconstruction performance, balancing stability and expressivity.
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Fig. 4. Optimization runtime and performance as a function of the number
of point lights. We find that using 9-16 point lights creates a stable opti-
mization problem, improves over only environment lighting, and is efficient.

Despite these limitations, as we show in Figure 3 and in the supple-
mentary, our 3D lighting representation Ψ is capable of simulating
close approximations to the diffuse image 𝐷 in a variety of scenes
and real-world illumination conditions. Although Ψ allows us to
render input images for the training of our neural renderer, it is not
intended to be an accurate modeling of real-world light sources.

4.2 Neural renderer
The final step in our pipeline is the feed-forward neural renderer
(NR) that models the gap between the initial rendering 𝐷̃ and real-
world appearance. Our lighting optimization in Section 4.1 allows
us to use any real-world photograph for training. Given the image
𝐼 , we first generate an illumination-invariant 3D representation
of the scene, which is then rendered under CG lighting. We use
the diffuse image 𝐷 as the target variable to generate the closest
PBR approximation to the original illumination in the environment.
𝐼 itself serves as the ground-truth for real-world appearance. We
use physical modeling to generate the illumination-dependent in-
puts to NR, effectively isolating it from existing illumination in 𝐼 .
Illumination-variant variables 𝐼 and 𝐷 are used only as target vari-
ables for either NR or PBR. Our self-supervised training pipeline is
outlined in Figure 3.

4.2.1 Inputs and losses. Our initial rendering 𝐷̃ reflects the target
illumination conditions, but lacks details due to its incomplete and
smooth geometry. In order to allow our network to remain faithful to
the original scene content, we also provide the full-resolution diffuse
reflectance 𝐴 as input. As noted in Section 4.1.6, the incomplete
geometry results in missing pixels in the PBR result. We apply a low-
level hole filling to clean 𝐷̃ of high-frequency artifacts and provide
a binary mask of invalid pixels,V𝑐 , also as input. We concatenate
𝐷̃ , 𝐴, andV𝑐 into a 7-channel map to serve as the input to NR.

The output of NR, 𝐼 , is defined as the realistic relighting result in
linear RGB. Using the original image 𝐼 as ground-truth, we define our
loss as a combination of the mean-squared error and the commonly
used multi-scale gradient loss [Li and Snavely 2018]:

L = 𝑀𝑆𝐸 (𝐼 , 𝐼 ) +
∑︁
𝑚

𝑀𝑆𝐸 (∇𝐼𝑚,∇𝐼𝑚), (6)

where ∇𝐼𝑚 represents the gradient of 𝐼 at scale𝑚.

4.2.2 Training dataset. We derive both the implicit variable𝑀 and
the target variable 𝐷 in our optimization in Equation 5 directly from
the input image 𝐼 , which also serves as the ground-truth real-world
appearance for our neural renderer. This allows us to use any set
of real-world photographs to generate training data. We use the
publicly available raw photograph collections RAISE [Dang-Nguyen
et al. 2015], MIT 5k [Bychkovsky et al. 2011], PPR 10k [Liang et al.
2021], and LSMI [Kim et al. 2021]. This large collection of in-the-
wild photographs offers a wide variety of training images that are
complex in terms of scene geometry, indoor and outdoor environ-
ments, direct and environmental real-world illumination conditions,
and objects and materials. In order for our neural renderer to model
the appearance in a higher dynamic range, we choose to utilize raw
photographs for training instead of jpg collections. Note that since
the higher dynamic range comes from PBR in our forward pipeline,
this choice of training on raw images does not result in a raw input
requirement in our forward pipeline.

We pre-process the entire dataset to generate (𝐷̃, 𝐼 ) pairs prior to
training. Although our optimization can successfully approximate
diverse real-world lighting conditions, it may fail in some scenes
with visible shadows in the image that are cast from out-of-view
objects. We filter out such images that our optimization can not
reliably reconstruct using a 2.5𝐷 monocular geometry using the
minimized objective function 𝑒 (𝐷,𝑀,𝜙∗), which directly reflect the
reconstruction accuracy. We eliminate 15% of the training pairs with
the highest 𝑒 (𝐷,𝑀,𝜙∗) to ensure consistency between all 𝐷̃−𝐼 pairs
used during training.

4.2.3 Architecture and Training. For our neural rendering network,
we employ a commonly used encoder-decoder architecture from
Midas [Ranftl et al. 2020]. We replace the encoder with the anti-
aliased version by Zhang [2019]. The network outputs the linear
relit image directly, using a ReLU activation to clip negative values.
We train the network using the Adam optimizer with a learning
rate of 10−5. Each batch has 8 images at 384x384 resolution, and
the network is trained for approximately 2 million iterations, which
takes 10 days on a single NVIDIA A40 GPU. We perform random
cropping and flipping as augmentation.

5 EXPERIMENTS
In this section, we provide qualitative and runtime comparisons to
representative state-of-the-art scene relighting methods and discuss
the shortcomings of each relative to our method. We also provide
quantitative comparisons in the form of a user study and a numerical
experiment on the BigTime dataset in the supplementary material.

5.1 Qualitative Results
We show a wide variety of in-the-wild relighting examples in Fig-
ures 1, 2, and 5. Our PBR-based simulation of the illumination allows
us to insert physically realistic lights such as the headlights on the
car in Figure 1, spotlights in Figure 2 and in the fruit bowl example
in Figure 5 as well as point light sources as shown in Figures 2 and 5.
Our physical reconstruction of the scene enables extreme changes
such as day-to-night or night-to-day conversion, even under existing
complex night-time lighting (Figure 1) or strong sunlight (Figure 6).
We further provide video examples with moving light sources in
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Fig. 5. Our method can generate unconstrained, full-controllable relit images for a wide variety of scenes. By defining the lighting configuration in 3D, users
can easily add both global and local lighting effects. Our neural renderer then converts CG-rendered approximations into realistic imagery.

Images from Unsplash by Feey (plant), Maksim Shutov (Cinque Terre), and Suzanne Boureau (fruit)
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Fig. 6. The method of [Griffiths et al. 2022] performs state-of-the-art outdoor scene relighting. Their method can only represent very specific lighting
configurations as it models the position of the sun in the sky. Our method is able to perform this same task while also being unconstrained, allowing for
precisely controlled relighting of the scene with local lighting effects. Image provided by Griffiths et al. [2022]

Fig. 7. We compare our results to the X⇒ RGB portion of the pipeline from [Zeng et al. 2024a]. Since the method relies on an input shading map to synthesize
the image, we feed it our rendered shading after inpainting the missing regions. The model is able to utilize this shading but does not generate results
consistent with the input shading. Additionally, much of the image content is altered in the resulting relit image.

Images from Unsplash by Lywin (bazaar) and the HDR+ Dataset [Hasinoff et al. 2016] (dog) .

the supplementary video. No prior method is capable of performing
a fully controllable relighting with light sources defined in a 3D
environment. Therefore, we show some conceptual comparisons to
existing state-of-the-art methods.

OutCast. Figure 6 shows a conceptual comparison to a result from
the method of Griffiths et al. [2022]. The method is conditioned by
a sun position, meaning there is a specific set of possible lighting
configurations that they are able to model. We can accurately gen-
erate relit images under this setting with an environment map, but
we can also generate any other configuration of environmental and
local lights, as shown in the additional examples.

RGB⇔X. In Figure 7 we show comparisons to relighting results
of RGB⇔X [Zeng et al. 2024a]. Their re-rendering network requires
estimated shading for the target re-rendering, or a natural text de-
scription in its place. To compare one-to-one with our approach,
we feed their diffusion model our rendered shading layer as the
irradiance channel. There model is able to utilize this guidance but
is unable to model the realism of natural photographs due to the lack
of real-world data in their training distribution. Additionally, the
model expects a clipped shading layer in the [0, 1] range, therefore, it
can not represent the full dynamic range of the target relighting. Our
method, on the other hand, is able to generate physically-accurate
lighting effects using the rendered starting point. In the right ex-
ample, we can see that our model is able to relight the dog with
accurate green illumination from the grassy environment, and a
bright spot from the sun behind the scene.

ICLight. In Figure 8 we compare to ICLight [Zhang et al. 2025],
which is a diffusion model meant to harmonize a foreground object
or portrait with a given background scene. The model can be used
as a general relighting method by feeding the input image as the
foreground, and a lighting condition image as the background. We
use our CG render as the lighting condition. We find that the method
is oftentimes not able to remove the original lighting of the input
scene since their pipeline does not explicitly take advantage of
illumination-invariant scene representations such as albedo. Our
method, on the other hand, can apply completely novel illuminating
environments without residual shading effects from the input image.

ScribbleLight. In Figure 9, we show a comparison with Scribble-
Light [Choi et al. 2024], which makes use of estimated intrinsic
components and user-drawn scribbles to condition a relighting dif-
fusion model. Although their model can easily be conditioned, the
2D nature of the scribbles limits the expressiveness of the control.
Users have to manually annotate that they want certain areas dark-
ened or lightened. Our method, on the other hand, just requires the
user to place a 3D light source where they want it in the scene. We
can then infer the side effects of the light, like saturated regions
on the wall, and darkening at the foot of the bed. Additionally, the
generative nature of the ScribbleNet pipeline results in altered scene
content as shown in the inset. Our method remains faithful to the
original image, which is crucial for photo relighting.
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Fig. 8. Comparison to ICLight [Zhang et al. 2025]. We condition their relighting diffusion model using the same initial CG render that we provide to our
model. Their method can generate a reasonably realistic result, but fails to remove the illumination from the input image. Our method properly uses the input
signal to achieve the desired environmental lighting provided.

Fig. 9. The method of Choi et al. [2024] uses user-scribbles to condition indoor relighting. Rather than rely on indirect conditioning in the image space, we
allow the user to explicitly place light sources in the 3D scene. This means we can accurately model resulting lighting effects, such as the light bouncing off
the wall. ScribbleLight requires the user to explicitly annotate these effects. Additionally, the result from ScribbleLight contains altered content due to the
generative modeling of the problem (inset), whereas our result maintains the identity of the original scene. Image from Unsplash by Adam Winger

5.2 Runtime Comparison
One of our framework’s main strengths when compared to existing
approaches is efficiency. While we do require estimated PBR quan-
tities for a given scene, we use feed-forward methods to generate
these components, taking only 2 seconds for a 512x512 image. After
this initial preprocessing, the image can be relit multiple times. For
each relighting, we render the generated mesh and send it through
our neural renderer. With 512 spp rendering, this whole process can
be carried out in about 0.7 seconds. Since recent relighting works
build off of Stable Diffusion, their pipelines require an expensive
sampling step. For a 512x512 image, the re-rendering portion of
RGB⇔X takes about 6 seconds to generate the output. The au-
thors of LumiNet [Xing et al. 2024] cite similar timings for their
method. Our efficiency allows us to perform interactive editing with
responsive user feedback and can readily be integrated into PBR
frameworks such as Blender. We demonstrate our pipeline in action
in a simple interactive web-based application in the supplementary
video.

6 LIMITATIONS
As we start from a single image, we can only reliably work with a
2.5𝐷 monocular geometry, which can not represent occluded areas
and out-of-view geometry. For many common light configurations,
any artifacts coming from this representation are fixed by our neural
renderer. However, placing the light sources in extreme places, such
as behind the scene,e may result in unrealistic cast shadows as the
light can leak into the scene from the missing geometry.
We do PBR using the diffuse reflectance and rely on our neural

renderer to create non-diffuse lighting effects in the scene.While this

works for a variety of materials and scenes, one challenging case is
portrait images. Human skin and hair require highly complexmodels
to allow a realistic simulation of light, and 3D reconstruction of
faces and hair also requires very high precision. With the estimated
diffuse reflectance and an in-the-wild geometry estimator, most of
the intricacies of the portrait are lost to our light simulation. With
a dedicated material model and specialized geometry estimators,
however, it is possible to utilize our self-supervised system design
for portrait images in the future.

7 CONCLUSION
Our pipeline brings the physical control over the light sources, that
has only been available in computer graphics pipelines, to image
relighting. To achieve this, we make use of state-of-the-art mid-level
computer vision methods, differentiable physically based rendering,
and neural rendering that we train with a self-supervised strategy.
This allows us to combine the in-the-wild generalization of modern
computer vision methods, the expressivity and customizability of
computer graphics pipelines, and the real-world appearance model-
ing power of neural networks in a single computational photography
pipeline. With the recent speed at which in-the-wild high-resolution
computer vision methods have been progressing and the ongoing
development of advanced PBR tools like Mitsuba 3, we expect to see
more opportunities to integrate computer graphics and computer
vision methodologies for computational photography applications.
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