Computational
Photography Lab.

Find the project web page here:
http://yaksoy.github.io/datamosh/

Datamoshing with Optical Flow

Chris Careaga
Simon Fraser University
Burnaby, BC, Canada

Mahesh Kumar
Krishna Reddy

Simon Fraser University

Yagiz Aksoy
Simon Fraser University
Burnaby, BC, Canada

Burnaby, BC, Canada

-

T |

Figure 1: We propose an algorithm to perform data moshing using optical flow. Our algorithm is general and has various
applications. Using multiple video sequences, we can create perplexing video transitions where the visual information of one
video is distorted or constructed using the motion of another (bottom row). Using a single video clip, we can create seamless

looping GIFs with interesting glitch art effects. (top row)

ACM Reference Format:

Chris Careaga, Mahesh Kumar Krishna Reddy, and Yagiz Aksoy. 2023. Data-
moshing with Optical Flow. In SIGGRAPH Asia 2023 Posters (SA Posters °23),
December 12-15, 2023. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3610542.3626133

An important aspect of video editing is transitions between two
consecutive scenes. Most video transitions are simplistic such as
jump cuts or fade-ins. With the current rise of short-form video
content on social platforms, more creative forms of transitions are
an important aspect of creating more engaging content. In this
work, we explore the use of optical flow to study a unique form of
transition between two distinct scenes inspired by the decades-old
technique of using MPEG compression data called data moshing.
Glitch art is the practice of corrupting digital media in order to
create aesthetically pleasing effects. One specific form of glitch art
called data moshing involves carefully altering the encoded data
of MPEG videos such that motion information is applied to the
incorrect visual data. This creates perplexing transitions between
distinct shots, where the visual data of one scene appears to follow
the motion of the next. This effect has existed for well over a decade
and has gained interest for its use in popular media. Despite its
popularity, data moshing has been predominantly carried out by

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SA Posters °23, December 12-15, 2023, Sydney, NSW, Australia

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0313-3/23/12.

https://doi.org/10.1145/3610542.3626133

altering compressed video data, which is inflexible and requires
specialized software and expertise.

In this work, we propose a simple method for emulating the ef-
fect of data moshing, without relying on the corruption of encoded
video, and explore its use in different application scenarios. Like tra-
ditional data moshing, we apply motion information to mismatched
visual data. Our approach uses off-the-shelf optical flow estimation
to generate motion vectors for each pixel. Our core algorithm can
be implemented in a handful of lines but unlocks multiple video
editing effects. The use of accurate optical flow rather than com-
pression data also creates a more natural transition without block
artifacts. We hope our method provides artists and content creators
with more creative freedom over the process of data moshing.

1 APPROACH

We formulate our approach as an operation performed on two
distinct video clips. For simplicity, we first describe a single step of
our data moshing process. The input to our algorithm is an image
¢, and a video clip V consisting of multiple frames:

V ={v1,02,...0+} (1)

The output is a data-moshed version of ¢ using the motion of V.
We first compute optical flow for V in order to define the perceived
motion between each frame. We denote this as an operation be-
tween two frames called flow. We use the optical flow from V to
displace the pixel values in ¢ using a remapping operator we denote
as remap:

r1 = remap(c, flow(v1,0v2)) 2)
The remapped image r; may have holes where new image content
entered the frame between v; and v2. To determine these regions


https://doi.org/10.1145/3610542.3626133
https://doi.org/10.1145/3610542.3626133
https://doi.org/10.1145/3610542.3626133
http://yaksoy.github.io/datamosh/

SA Posters '23, December 12-15, 2023, Sydney, NSW, Australia

A
Input Image

Careaga et al.

Figure 2: Our algorithm in its simplest form operates on an image and a video sequence. We compute the optical flow of the
video sequence and use the motion to warp the pixels of the input image. We keep track of any holes created from warping
using a binary mask, the warped image is composited with each from of the input video to create a data moshed output video.

we additionally warp an image of all ones, leaving the holes as
Z€eros:

my = remap(L, flow(v1,02)) ©)
Finally, to create our final data moshed frame, we fill any holes in
r1 using the image content from V with mj as a mask:

di = (my*r1) +(1-my) *0vp 4
We then define the rest of the frames iteratively from d;:
ri = remap(di-1, flow(v;,vi41))
m; = remap(mi—1, flow(v;, vi+1)) 5)
di = (mj = ri) + (1= m;) *vigy

This results in a new set of frames representing a data-moshed
transition between the visual content of ¢ and the frames of V. The
optical flow can be computed using any off-the-shelf algorithm.
In this work, we experiment with both the traditional algorithm
by Farneback [2003], and a network-based approach by Teed and
Deng [2020]. We perform the remapping of pixel values using the
Kornia library [Riba et al. 2020].

2 APPLICATIONS

The general algorithm described in Section 1 can be utilized to
perform multiple video transition effects.

Forward Mode. The default use case for our approach is to per-
form a transition between two distinct shots. Given two videos, we
use the last frame of video 1 as ¢ and use video 2 as V. This results in
a combined video where video 1 appears to visually freeze and then
be warped and mixed with the visual content of video 2. As our
supplementary video demonstrates, we find the most interesting
use of the forward mode to be transitioning between two scenes
with a panning motion.

Reverse Mode. By playing the result of the forward mode in
reverse, we can give the illusion that the visual content of video 1
coalesces from randomness before playing regularly. In this case,
the resulting video order and motion are backward, therefore we can

reverse the video and frame ordering before running our algorithm
in forward mode to achieve this effect while maintaining temporal
coherency. The reverse mode gives the most pleasing results when
transitioning into a scene with large and localized motion, where the
new scene appears to unexpectedly come together from seemingly
random motion.

Looping. Instead of utilizing two distinct scenes, our algorithm
can be run on a single video clip. For a given video, we can set ¢
to the first frame of the video, and run our algorithm in reverse
mode. This results in a data-moshed video where the first frame
is reconstructed as the video progresses resulting in a seamless
looping video. We find the looping mode to be most interesting for
short-form videos that has gained immense popularity in recent
years with the emergence of TikTok followed by YouTube Shorts
and Instagram Reels. In such platforms, the videos are played in a
loop by default, for which our data moshing transition represents
an effortless yet interesting way to create a natural transition.

3 CONCLUSION

In this work, we proposed a simple algorithm based on optical
flow that can emulate the effect of data moshing. We show that
our approach can be applied in multiple different ways to perform
interesting video edits. We believe our algorithm allows for more
creative freedom than traditional data moshing techniques meaning
it can be more easily used by a wide variety of artists and content
creators. We invite the reader to view our supplementary video
where we demonstrate our applications. Our poster presentation
will feature a video player to fully communicate our work.

REFERENCES

Gunnar Farnebiack. 2003. Two-Frame Motion Estimation Based on Polynomial Expan-
sion. In Image Analysis.

E. Riba, D. Mishkin, D. Ponsa, E. Rublee, and G. Bradski. 2020. Kornia: an Open Source
Differentiable Computer Vision Library for PyTorch. In Proc. WACV.

Zachary Teed and Jia Deng. 2020. RAFT: Recurrent All-Pairs Field Transforms for
Optical Flow. In Proc. ECCV.



	1 Approach
	2 Applications
	3 Conclusion
	References

