
Semantic Soft Segmentation
Supplementary Material

YAĞIZ AKSOY, MIT CSAIL and ETH Zürich
TAE-HYUN OH, MIT CSAIL and HBKU QCRI
SYLVAIN PARIS, Adobe Research
MARC POLLEFEYS, ETH Zürich and Microsoft
WOJCIECH MATUSIK, MIT CSAIL

ACM Reference format:
Yağız Aksoy, Tae-Hyun Oh, Sylvain Paris, Marc Pollefeys, and Wojciech
Matusik. 2018. Semantic Soft Segmentation Supplementary Material. ACM
Trans. Graph. 37, 4, Article 72-Supp. (August 2018), 6 pages.
DOI: 10.1145/3197517.3201275

To supplement the main document, we provide the details of our
feature vector estimation in Section 1, and additional results and
comparisons in Figures 3-5.

1 GENERATING SEMANTIC FEATURE DESCRIPTORS
We begin by computing a set of per-pixel semantic features for each
input image. In principle, the network generating the features can
be easily replaced to improve the results in parallel to advances
in semantic segmentation, or to change the definition of semantic
objects, such as to serve fine-grained or instance-aware semantic
segmentation scenarios.
We train a deep convolutional neural network cascaded with

metric learning, to generate features that are similar if they belong
to the same object class, and distant from each other otherwise. The
network outputs per-pixel semantic features of d = 128 dimensions.
For simplicity, we denote a semantic feature vector f p ∈ Rd for
each pixel p.
The base network of our feature extractor is based on DeepLab-

ResNet-101 [Chen et al. 2017]. The DeepLab model is built on a fully
convolutional variant of ResNet-101 [He et al. 2015a] with atrous
convolutions and atrous spatial pyramid pooling. In the DeepLab-
ResNet-101, the res4b22 layer is the most commonly used output as
a generic feature, which is 2048 dimensional at one sixteenth of the
original image resulution. Since our purpose is to extract per-pixel
feature with plausible object contours and boundaries, directly lever-
aging multi-scale context information is favorable when compared
to using a condensed feature at higher layer such as res5b_relu. We
modify the architecture to take features from lower as well as higher-
levels into account. We use the feature concatenation, motivated
by [Bertasius et al. 2015; Hariharan et al. 2015], but we maintain a
light representation to avoid large memory bottlenecks. We branch

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2018/8-ART72-Supp. $15.00
DOI: 10.1145/3197517.3201275

C
o

n
cat.

CNN

res5c

res4b22

res3b3

pool1

input

[512]

[256]

[128]

[4]

[124]

[2048]

[1024]

[512]

[3]

[256]

C
o

n
v1

x1

R
eLu

C
o

n
v1

x1

[1
0

2
4

]

[1
2

8
]

[5
1

2
]

Positive pair

Negative pair

Embedding

U
p

R
eLu

C
o

n
v3

x3

U
p

R
eLu

C
o

n
v3

x3

U
p

R
eLu

C
o

n
v3

x3

U
p

R
eLu

C
o

n
v3

x3

U
p

R
eLu

C
o

n
v3

x3

Fig. 1. Our network architecture. We extract the feature of intermediate
representation of the base convolution neural network (we use the DeepLap
variant of ResNet-101). The feature are compressed by 3 × 3 convolution
followed by ReLu and bilinear up-sampling to have the same resolution with
input. The concatenated features are fed to subsequent 1 × 1 convolution.
On top of this feature, we apply sampling based metric learning in an
end-to-end manner. We denote feature dimension as [#].

input, pool1, res3b3, res4b22 and res5c layers to extract the fea-
tures, followed by a 3 × 3 convolution with ReLu to compress the
intermediate feature dimensions from {3, 256, 512, 1024, 2048} to
{4, 124, 128, 256, 512}, respectively, for a total of 1024 dimensions.
We then upsample them via bilinear upsampling to the input im-
age resolution, followed by two 1 × 1 convolution layers which
gradually reduce 1024 feature dimension to 512 and then finally to
d = 128. The final output of this process defines our per-pixel seman-
tic features f p . Our architecture is visualized in Figure 1. It is worth
pointing out that our architecture is fully convolutional, allowing
it to be applied to inputs of arbitrary resolution. While Bertasius
et al.; Hariharan et al. leverage the pre-trained network without
re-training, we fine-tune the whole network for our purpose.
To train the whole network, we use L2 distance between pixel

features as the metric to measure the semantic similarity. We will
now describe our loss function on the pixel-level. Given a query
vector f p of a pixel p, we use positive vectors to pull the query
towards positive one a and negative vectors to push to negative one
for positive and negative examples from the query at a time [Hoffer
and Ailon 2015]. Since we work on input image resolution, to easily
utilize more data and be computationally more efficient, we use
N-pair loss [Sohn 2016] with a slight modification. The N-pair loss

ACM Transactions on Graphics, Vol. 37, No. 4, Article 72-Supp.. Publication date: August 2018.

72-Supp.:2 • Aksoy, Oh, Paris, Pollefeys and Matusik

Fig. 2. We first generate a 128-dimensional feature vector per pixel for a
given image (a). A random projection of 128 dimensions to 3 is shown in (b).
We reduce the dimensionality of the features to 3 using principle component
analysis per image (c). In order to align the feature vectors to the image
edges, we first filter each of the 128 dimensions with guided filter [He et al.
2013] and then apply dimentionality reduction (d).

benefits data efficiency by hard negative data-mining style formula-
tion and cross-entropy style loss to alleviate the slow convergence
by loss-balancing in triplet loss [Hoffer and Ailon 2015]. While the
N-pair loss is defined on an inner product-based metric, we replace
it with L2 distance. Hence, our loss is defined by:

Lm =
1
|P |

∑
p,q∈P

I[lp = lq] log
((
1 + exp

(
∥ f p − f q ∥

))
/ 2

)
+ I[lp , lq] log

(
1 + exp

(
−∥ f p − f q ∥

)
/ 2

)
,

(1)

where P denotes the set of sampled pixels, ∥ · ∥ L2-norm (we divide
it by d for normalization), I[·] the indicator function that returns 1
if the statement is true and 0 otherwise, and lp the semantic label
of pixel p.
In (1), for positive pairs, i.e. lp = lq , the corresponding term

log
((
1 + exp

(
∥ f p − f q ∥

))
/ 2

)
approaches zero. The conjugate re-

lation applies to the negative pairs in the second term in (1). Since
we only use this cue, whether two pixels belong to the same cate-
gory or not, specific object category information is not used during
training. Hence, our method is a class agnostic approach. This fact
does not harm our overall goal of semantic soft segmentation as
we aim to create soft segments that cover semantic objects, rather
than classification of the objects in an image. This also enables us
to take into account diversity of semantics and not be limited to
user-selected classes.

We construct the set of sampled pixels P as follows. During train-
ing, we feed a single image as a mini-batch to the network, and we
get the features for all pixels. Given an input image and its corre-
sponding semantic ground-truth labels, we first randomly sample
Pinst number of instances, then for each instance, we randomly
sample Ppix number of pixels within each instance label mask, so
that the number of pixels in each group are balanced. We minimize
(1) for the selected samples, and we repeat the sampling 10 times
per image, accumulate gradients from them, and update at once.
We set Pinst = 3 and Ppix = 1000. We can easily compute (1) in a
matrix form by using D = F1d1dT + (V1d1dT)T − 2VVT , where D
is the matrix containing L2 distances between the feature vectors,
1d is a row-vector of ones, and F contains the feature vectors of the

samples pixels:

F =
[
f 1,1 · · · f 1,Ppix , f2,1 · · · f 2,Ppix , · · · f Pinst,Ppix

]T
(2)

We trained our network on the training split of COCO-Stuff [Cae-
sar et al. 2016], which has 182 number of object and stuff categories
with instance-level annotation. We initialized the base DeepLab part
with the pretrained weights on the semantic segmentation task of
MS-COCO [Lin et al. 2014] (80 categories), and the remaining parts
with Xavier initialization [He et al. 2015b]. We set the learning rate
to 5× 10−4 for the base part and 5× 10−3 for the rest to compensate
for the random initialization. We use stochastic gradient descent
with momentum 0.9, poly-learning rate decay of 0.9 as suggested
by Chen et al. [2017], and weight decay of 5 × 10−4. We also use
drop-out with probability 0.5 for 1 × 1 convolutions at the two last
stages. We train for 60k iterations and it roughly takes less than one
day on an NVIDIA Titan X Pascal GPU.

1.1 Preprocessing
The 128-dimensional feature vectors f p have enough capacity to
represent a large diversity of real-world semantic categories. How-
ever, for a given image, as the number of object categories present
in the scene is inherently limited, the effective dimensionality of the
feature vector is much smaller. Following this fact, in order to make
the graph construction (described in the main paper) more tractable
and less prone to parameter-tuning, we reduce the dimensionality
of the feature vectors to three using per-image principle component
analysis.
One of the major shortcomings of semantic hard segmentation

is its inaccuracy around object boundaries [Bertasius et al. 2016].
This fact is well-reflected in the generated feature vectors as well, as
shown in Figure 2. In order to compute more effective affinities when
we are inserting the semantic information into the graph, we regu-
larize the feature vectors using guided filtering [He et al. 2013] with
the guidance of the input image. This makes the features to be more
consistent with hard boundaries in the image, as shown in Figure 2.
We do this filtering for all 128 dimensions prior to the dimensional-
ity reduction. Finally, we normalize the lower-dimensional features
to be in the range [0, 1] to get the three dimensional feature vectors
f̃ p to be used for affinity computations.

REFERENCES
Gedas Bertasius, Jianbo Shi, and Lorenzo Torresani. 2015. High-for-low and low-for-

high: Efficient boundary detection from deep object features and its applications to
high-level vision. In Proc. ICCV.

Gedas Bertasius, Jianbo Shi, and Lorenzo Torresani. 2016. Semantic Segmentation with
Boundary Neural Fields. In Proc. CVPR.

Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. 2016. COCO-Stuff: Thing and Stuff
Classes in Context. arXiv:1612.03716 [cs.CV] (2016).

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. 2017. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach.
Intell. (2017).

Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. 2015. Hyper-
columns for object segmentation and fine-grained localization. In Proc. CVPR.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2017. Mask R-CNN. In
Proc. ICCV.

Kaiming He, Jian Sun, and Xiaoou Tang. 2013. Guided Image Filtering. IEEE Trans.
Pattern Anal. Mach. Intell. 35, 6 (2013), 1397–1409.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015a. Deep Residual
Learning for Image Recognition. arXiv:1512.03385 [cs.CV] (2015).

ACM Transactions on Graphics, Vol. 37, No. 4, Article 72-Supp.. Publication date: August 2018.

Semantic Soft Segmentation Supplementary • 72-Supp.:3

Input image Our features PSPNet Mask R-CNN Spectral matting Our result

Fig. 3. We show our results together with that of Zhao et al. [2017] (PSPNet), He et al. [2017] (Mask R-CNN), and spectral matting [Levin et al. 2008]. The
segmentations are overlayed onto the grayscale version of the input image for a better evaluation around segment boundaries. Notice the inaccuries of PSPNet
and Mask R-CNN around object boundaries, and the soft segments of spectral matting extending beyond objects.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 72-Supp.. Publication date: August 2018.

72-Supp.:4 • Aksoy, Oh, Paris, Pollefeys and Matusik

Input image Our features PSPNet Mask R-CNN Spectral matting Our result

Fig. 4. We show our results together with that of Zhao et al. [2017] (PSPNet), He et al. [2017] (Mask R-CNN), and spectral matting [Levin et al. 2008]. The
segmentations are overlayed onto the grayscale version of the input image for a better evaluation around segment boundaries. Notice the inaccuries of PSPNet
and Mask R-CNN around object boundaries, and the soft segments of spectral matting extending beyond objects.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 72-Supp.. Publication date: August 2018.

Semantic Soft Segmentation Supplementary • 72-Supp.:5

Input image Our features PSPNet Mask R-CNN Spectral matting Our result

Fig. 5. We show our results together with that of Zhao et al. [2017] (PSPNet), He et al. [2017] (Mask R-CNN), and spectral matting [Levin et al. 2008]. The
segmentations are overlayed onto the grayscale version of the input image for a better evaluation around segment boundaries. Notice the inaccuries of PSPNet
and Mask R-CNN around object boundaries, and the soft segments of spectral matting extending beyond objects.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 72-Supp.. Publication date: August 2018.

72-Supp.:6 • Aksoy, Oh, Paris, Pollefeys and Matusik

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015b. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In Proc.
ICCV.

Elad Hoffer and Nir Ailon. 2015. Deep metric learning using triplet network. In
International Workshop on Similarity-Based Pattern Recognition.

Anat Levin, Alex Rav-Acha, and Dani Lischinski. 2008. Spectral Matting. IEEE Trans.
Pattern Anal. Mach. Intell. 30, 10 (2008), 1699–1712.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common objects in
context. In Proc. ECCV.

Kihyuk Sohn. 2016. Improved deepmetric learning with multi-class n-pair loss objective.
In Proc. NIPS.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. 2017.
Pyramid Scene Parsing Network. In Proc. CVPR.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 72-Supp.. Publication date: August 2018.

	1 Generating semantic feature descriptors
	1.1 Preprocessing

	References

