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Fig. 1. Extension of Figure 1 in the main paper. Image from Unsplash by Debby Hudson

ACM Reference Format:
Chris Careaga and Yağız Aksoy. 2023. Intrinsic Decomposition via Ordinal
Shading Supplementary Material. ACM Trans. Graph. 1, 1 (October 2023),
9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

In this document, we provide additional information pertaining
to the implementation and preprocessing used for each dataset,
prior method, and for our proposed pipeline. Additionally, we give
an extended qualitative analysis comparing our method to prior
works not included in the main paper. We also include alternate
versions of various figures from the main paper. Finally, we provide
an extended figure and discussion about the efficacy of our proposed
multi-illumination training strategy.

A TRAINING DATASETS
We provide details on the datasets used to train our method, as well
as the process of preparing the data for training of our networks.

A.1 CGIntrinsics
The CGIntrinsics dataset [Li and Snavely 2018a] is a synthetic
dataset containing approximately 20,000 images rendered by the
Mitsuba renderer. Each image is (640 x 480) pixels and comes with
dense ground truth albedo values saved in PNG files. The lighting
effects are mostly Lambertian with some colorful inter-reflections
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and light sources. The images consist mainly of simple, uncluttered
indoor scenes.

A.2 Hypersim
The Hypersim dataset [Roberts et al. 2021] is a synthetic dataset
containing over 74,000 high-quality renders of approximately 460
different indoor scenes. Each image is (768 x 1024) pixels and is
factored into diffuse illumination, diffuse reflectance, and a non-
diffuse residual. The images are diverse and contain realistic lighting
effects. The images are provided as HDR images and we use the
provided code to tonemap them to LDR without performing gamma
compression. We then proportionally scale the albedo, to ensure it
is in [0, 1], and save it as a PNG image.

A.3 OpenRooms
The OpenRooms dataset [Li et al. 2021] is a synthetic dataset contain-
ing approximately 100,000 rendered images of 1,287 indoor scenes.
The rendered images are (480 x 640) pixels and have realism and
quality similar to the CGIntrinsics dataset. The dataset is provided
with HDR input images that we tonemap and clip using the same
technique as the other datasets

A.4 FSVG/GTA
To add more diverse image content, we utilize the dataset provided
by [Krahenbuhl 2018]. The dataset consists of over 100,000 captures
from the video game "Grand Theft Auto 5". The provided images are
(600 x 800) pixels and mainly consist of outdoor scenes with roads,
vehicles, buildings, trees, etc.

A.5 Multi-Illumination Dataset
The MIT Multi-Illumination Dataset [Murmann et al. 2019] consists
of over 1000 scenes captured under 24 varying illuminations. The
scenes are all taken indoors and contain various household objects.
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Fig. 2. Our proposed intrinsic decomposition pipeline. Image from Unsplash by Erik Binggeser.

Each image is captured using an automated bounce-flash. The pro-
vided images are 1000x1500 in JPEG or EXR format, we tonemap
them using the same process as the synthetic datasets. Since each
image contains both a specular and diffuse light probe, we also white
balance the images using the diffuse light probe.

A.6 Preprocessing
For each dataset, we store the input images and their corresponding
albedo. We mask the ground-truth intrinsic components by exam-
ining the albedo values at each pixel. If the value is below 0.004
we mark it as invalid since it is likely that the pixel does not have
a reliable albedo or shading value because; information was lost
during the image compression process, the pixel is on a sky-box,
or the pixel is on a highly non-Lambertian surface (such as glass).
When training models, we load the input images and albedo and
compute the implied shading. In other words, given an image 𝐼 and
its albedo component 𝑅 we can compute the implied shading as
𝑆 = 𝐼/𝑅. We use these values to supervise our models.

B EVALUATION DATASETS
We provide specific details about the collection and processing of
the datasets used for evaluation of our proposed method.

B.1 ARAP Dataset
For the ARAP dataset, we collect the scenes provided by Bonneel
et al. [2017]. We include the scenes given in the supplementary
material as well as the extended set of scenes provided on their
website. There are 52 scenes in total, each scene may have multiple
illuminations resulting in 157 different images. For each data point,
the authors provide the image and albedo. To compute the shading
we divide the image by the albedo. This results in a 3-channel col-
orful shading component. For fair comparison, we desaturate the
shading and re-multiply by the albedo to generate a white-balanced
input image. Additionally, we create a mask that omits pixels with
a very low albedo or shading value, in order to avoid evaluating
methods on pixels with inaccurate values or lost information.

B.2 IIW Dataset
Weutilize the original implementation of theWHDRmetric from [Bell
et al. 2014] and the test set split from Narihira et al. [2015]. For our
pipeline, we resize using the scheme described in Section 4.1 of the
main document. This generally results in an upscaled image, even
though no information is introduced, we find that the network can
produce better details when small images are upscaled. We then
send the image through our pipeline and downscale it to its original
size before evaluation.

B.3 SAW Dataset
For the SAW dataset, we follow the same resizing scheme used
for the IIW dataset. For evaluation, we utilize the implementation
provided by Li and Snavely [2018a].

C EVALUATION METRICS
We provide specific details on the parameters and implementation
used for each metric used to evaluate ordinal estimations.

C.1 Ordinal
We utilize the pair-wise ordinal metric (Ord.) proposed by Xian et al.
[2020] to evaluate the quality of ordinal estimations. This metric
randomly samples pairs of points from the image and compares
their ordinal relationship to that of the ground truth. We found
that if enough points are sampled, this metric varies little from run
to run. Nevertheless, we chose to precompute the sampled points
and reuse the same set of points for each model tested. For both
resolutions, we uniformly sample 10,000 pairs from the valid pixels
in each image.

C.2 D3R
We use the implementation of the D3R metric proposed by Mian-
goleh et al. [2021] for measuring the accuracy of ordinal relation-
ships across local image boundaries. The metric first generates a
superpixel segmentation of the image. To determine the ordinal re-
lationship between two pixels, we compute the ratio of their values.
For all neighboring pairs of superpixels, we filter out pairs whose
ratio is in [0.9, 1.1]. This leaves pairs that have a sufficient difference
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Fig. 3. Extension of Figure 2 in the main paper. Top image from Unsplash by Mauro Lima

in brightness between them, denoted as P. For each of these pairs,
we use the ground-truth shading 𝑆 to compute the ground-truth
ordinal relationships:

𝑟𝑖 𝑗 =

{
0 𝑆𝑖/𝑆 𝑗 < 1
1 𝑆𝑖/𝑆 𝑗 > 1

(1)

The same process is carried out on the estimated ordinal shading
to generate 𝑟𝑖 𝑗 . The D3R metric is then computed as:

1
P

∑︁
𝑖 𝑗∈P

|𝑟𝑖 𝑗 − 𝑟𝑖 𝑗 | (2)

We do not consider any superpixels that are invalid according to
the provided mask for each image. We compute superpixels using an
implementation of SLIC (specifically SLIC-zero). For the 384 pixel
images we compute 1000 superpixels, and for the R0 resolution
images we compute 3000 superpixels. For both, we set the compact-
ness parameter to 0.001. We find these parameters yield uniform
segments that still follow image gradients.

D TRAINING IMPLEMENTATION DETAILS
We provide additional details pertaining to the training of both the
networks in our proposed pipeline.

Training CGI OR HS FSVG MI
Synthetic Only 0.10 0.15 0.30 0.35 –
With Multi-Illumination 0.10 0.10 0.20 0.20 0.40

Table 1. Sampling probabilities for each dataset when training the ordinal
network. Values are chosen to reflect each dataset’s size and quality.

D.1 Ordinal Training
We perform extensive augmentation on the ground-truth intrinsic
components when training the ordinal network. First, we perform
random hue and saturation shifting on the provided albedo values.
We additionally compute a random scaling of the red and blue
channels of the albedo to simulate random white balancing. We
combine these altered albedo components with the ground-truth
shading to generate a novel input image. To make our predictions
more robust to changes in resolution, we also perform random
scaling of inputs before randomly cropping a fixed-sized patch the
same size as the network’s receptive field (384 x 384). This helps
the network learn to generate quality predictions at any resolution.
Finally, the inputs and ground truth are horizontally flipped with a
50% probability.
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Fig. 4. Extension of Figure 12 in the main paper. Images from Unsplash by William Jones (left) and Austin Wade.

We train the ordinal network with a batch size of 8. For each batch
we randomly sample images from each dataset, the datasets are
sampled with the probabilities shown in Table 1. These probabilities
are chosen to reflect the size and quality of each dataset. We first
train on only synthetic datasets for 700,000 iterations. We then use
these weights to generate the multi-illumination data. We continue
training for 300,000 iterations with dataset probabilities that are
biased toward the multi-illumination data.

Our main signal for ordinal shading estimation is a scale-and-
shift invariant (SSI) loss function on inverse shading, where the
scale and shift is estimated using least squares during training.
As mentioned in Section 5.2 of the main text, the least-squares
estimation that is required for scale-invariant losses for full intrinsic
decomposition creates instability especially during the early stages
of the training. This instability also applies to the SSI loss, although
it is less pronounced as the SSI least squares fit is computed on
the bounded inverse shading domain. While our inverse shading
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Fig. 5. Extension of Figure 20 in the main paper. All images from Unsplash, bottom left by Lieuwe Terpstra and bottom right by William Jones

formulation does not completely alleviate this issue, we do not
observe any issues early on in training. We believe, however, that
early training stability can also depend on implementation details
such as network architecture and weight initialization. In the case
that the training diverges from unstable scale and shift estimation,
the ordinal network can be trained with vanilla MSE for a few
iterations until network outputs are in a reasonable range. Once the
network roughly picks up the task and starts generating somewhat
reliable estimates, the SSI loss formulation can be used for the rest
of the training.

D.2 Intrinsic Decomposition Training
We train our second network on the high-definition samples from
the Hypersim dataset. Since the ordinal network is also trained on

the Hypersim dataset, we do not expect the ordinal estimations to
exhibit the same artifacts and inconsistencies as real-world images.
This results in our high-resolution network learning the trivial
solution of simply outputting the high-resolution ordinal input. To
mitigate this, we apply augmentation on the high-resolution ordinal
estimations by adding low-frequency artifacts that simulate the
issues we observe on real images. The network is then forced to
learn how to leverage the information given in the low-resolution
estimation because it contains the global consistency that the high-
resolution estimation lacks.

We begin training the high-resolution network on the Hypersim
dataset. We train with a batch size of 8 for 200,000 iterations. We use
these weights to generate the multi-illumination data. We then train
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Fig. 6. Extension of Figure 21 in the main paper. Two images from Unsplash by Francesca Tosolini (top) and Beazy (bottom left).

for 200,000 more iterations with batches consisting of 4 Hypersim
images and 4 multi-illumination images.

D.3 Losses
For the multi-scale gradient loss we utilize the code provided by
Li and Snavely [2018a]. To compute each scale, the prediction and
ground-truth are downscaled to half the size of the previous scale,
and the gradient is computed with finite differences. Following Li
and Snavely [2018a] we use a pyramid consisting of 4 scales.

D.4 CGIntrinsics-Only Training
For the metrics measured in Table 1 of the main paper, we train
a version of our proposed approach with only the CGIntrinsics
dataset [Li and Snavely 2018a] to show the relative performance
contributions from our formulation and datasets separately. We
train both networks in our pipeline, using only the CGIntrinsics
dataset which consists of 20,000 synthetic examples. We exclude the
extra renderings from the ARAP dataset distributed with the CGIn-
trinsics dataset. We train the ordinal network for 150 epochs using
our proposed ordinal loss formulation. We then train our second
network for 150 epochs on square crops of size (480 × 480), rather
than (512 × 512), due to the smaller image size of the CGIntrinsics
dataset. Other than that, all other training settings remain the same.

E COMPETING METHODS IMPLEMENTATION DETAILS
Given that there is no standardizedway to perform data pre-processing
for intrinsic decomposition, we find that many methods vary in the
resizing and linearization process of input images and intrinsic
components. The Lambertian formulation in the intrinsic equation
assumes a linear image. This means that any aspects of implemen-
tation pertaining to the reconstruction of the input image (e.g. re-
construction losses), should be formulated in linear RGB.

Additionally, nearly all data-driven approaches to intrinsic decom-
position utilize fully-convolutional neural networks. This means
that the networks can process an image at any resolution (assuming
its dimensions are divisible by certain values that vary by archi-
tecture). Despite this, many works opt to always resize images to
a specific resolution in order to generate stable results from their
networks.
We find that some of the open-source implementations of prior

works are either ambiguous or unclear in terms of these details. We
attempt to reconcile the intended usage of each method to ensure
fair comparisons.

[Li and Snavely 2018a]. Following the open-source training imple-
mentation released by [Li and Snavely 2018a], we assume that their
network expects an sRGB image. According to their reconstruction
loss, their intrinsic components should combine to create the linear
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Fig. 7. Extension of Figure 5 in the main paper.

version of the image. Therefore we assume that their network out-
puts linear albedo and shading. We utilize their provided functions
for converting between linear RGB and sRGB. The authors do not
provide an inference script, therefore during evaluation, we utilize
their resizing function used in their IIW and SAW evaluations that
down-scales the image while maintaining the aspect ratio.

[Luo et al. 2020]. The network of Luo et al. [2020] utilizes the CGIn-
trinsics dataset and therefore uses the same linearization process
as Li and Snavely [2018a] (sRGB input, linear outputs). They use a
resizing function similar to that of Li and Snavely [2018a] but with
smaller sizes.

[Das et al. 2022]. The open-source implementation provided by Das
et al. [2022] does not include training code, therefore we follow the
pre-processing included in the inference script. The input image
is resized to a constant size of (256 × 256). The network seems to
reconstruct whatever image is provided to it, therefore it is assumed
that the network should be provided with a linear image to produce
linear components. No linearization is included in the inference
script, and we observed more artifacts when using linear images
as input. For qualitative results, we feed the network sRGB images
to avoid artifacts. For quantitative results on the ARAP dataset,

the model performs well with the provided linear images, and the
reconstruction error is computed against the linear image, therefore
we evaluate the method using the linear inputs.

[Baslamisli et al. 2018]. The authors of Baslamisli et al. [2018] release
their inference code but do not provide training code. Since the
inference script does not linearize the input image, we assume both
the input and output are sRGB. When computing reconstruction
error we multiply the outputs and compare it with the input image.
The authors perform a constant resize of input images to (352×480)
which we use for evaluation on the ARAP dataset.

[Lettry et al. 2018]. Following the inference code provided by Lettry
et al. [2018], we do not linearize the input image given to their
network. Since they define their output in terms of shading and
implied albedo like our approach, we assume the output components
are not linear (since the input image is not). We slightly alter their
code when saving outputs in order to avoid over-saturation of the
output shading. To avoid large outliers when normalizing, we divide
the shading by the 99th percentile value and then clip between 0
and 1. The authors do not resize the image as part of their inference
script, therefore we assume the network can take images of any
size.
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Fig. 8. Extension of Figure 11 in the main paper. We provide two examples with albedo estimations added. We observe a noticeable improvement in both
shading and albedo when training our network using our proposed multi-illumination pseudo-ground-truth. Our predictions become more globally consistent
(top row inset), as well as more detailed around image content not seen during training (bottom row inset). Images from Unsplash by Ladislav Stercell (horse) and
Philip Myrtorp (apples).

[Bell et al. 2014]. The code provided by Bell et al. [2014] assumes
that the input image is linear, and makes sure to convert it before
running their algorithm. Since this method is a traditional optimiza-
tion method, there is no training-dependent resizing and we can
therefore feed images in at any resolution.

[Shen et al. 2011]. Although it is not stated, we assume that Shen
et al. [2011] expects images in linear RGB. Due to their formulation,
the predicted components always reconstruct the input image, and
therefore we can conclude that the components are in linear RGB
as well. Similar to Bell et al. [2014] we do not perform any fixed
resizing since their algorithm accepts images of any size.

F EXTENDED QUALITATIVE ANALYSIS
In the main document, we focus our qualitative evaluation on recent
deep learning methods that yield high scores on benchmark datasets.
Here, for completeness, we provide further evaluation against more
existing methods, including two optimization-based methods and
two deep learning methods. Specifically, we evaluate our proposed
method against Bell et al. [2014], Shen et al. [2011], Li and Snavely
[2018b] and Lettry et al. [2018]. We provide results for these four
methods, along with the methods discussed in the main paper for
100 in-the-wild images in our supplementary material.

[Bell et al. 2014]. The authors of Bell et al. [2014] propose an op-
timization approach to intrinsic decomposition that uses multiple
low-level descriptors and corresponding priors to generate plausible
decompositions with desirable properties. Their method takes mul-
tiple minutes to process a megapixel image. Due to the assumption
that albedo is piece-wise sparse, their method tends to incorrectly

attribute hard shadows to the albedo component. This can be seen
on the hand towel in Figure 1 as well as on the left building facade in
Figure 4. This causes residual shadows when using their albedos for
relighting, as seen in the house example in Figure 5. We also observe
difficulties in regions with high-frequency albedo changes. Their
method is unable to separate low-frequency shading changes from
high-frequency albedo changes, causing issues when performing
recoloring. The effects of this can be seen in the chair and carpet
examples in Figure 6. Finally, while their method is able to gener-
ate sparse albedos, the corresponding shading often lacks global
coherency. For example, the hand towel in Figure 1 has a higher
magnitude than the wooden background. Since these two image
regions share similar orientations, they should have similar shading
magnitudes.

[Shen et al. 2011]. Similar to Bell et al. [2014], the authors of Shen
et al. [2008] propose an optimization-based approach to intrinsic
decomposition. Their method also requires multiple minutes of run-
time for a megapixel image. Their method exhibits similar behavior
to Bell et al. [2014] often times attributing hard shadows to the
albedo component resulting in inaccurate relighting. Their method
also tends to generate over-smoothed albedo components which re-
sults in high-frequency information being attributed to shading, this
limits the recoloring capabilities of the method as seen in Figure 6.

[Li and Snavely 2018b]. The method proposed by Li and Snavely
[2018b] is an unsupervised approach to intrinsic decomposition
that leverages multi-illumination data and multiple dense priors to
train a CNN. Their method outputs albedo, shading, and a single
shading color which is multiplied by the grayscale shading.We show
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some examples of their outputs in Figure 4. We observe that their
shading generally has very low contrast. Their albedo prediction
for the building assigns a very saturated green to the windows and
incorrectly contains the shadows on the building and street. Their
albedo prediction for the portrait image does not represent the sharp
changes in albedo and contains the shadows on the floor.

[Lettry et al. 2018]. The authors of Lettry et al. [2018] also propose
an unsupervised approach based on multi-illumination data. Their
method predicts colorful shading and ensures reconstruction by
generating albedo from their shading prediction and the input image.
We observe that their shading often exhibits color leakage from the
albedo, we can see this on the leaves of the hand-towel in Figure 1,
and on both examples in Figure 4. This leakage of colors into the
shading results in shifted colors in the albedo, which subsequently
affects the accuracy of the relit examples shown in Figure 5. Their
shading predictions are also low-frequency which affects the realism
of recoloring effects. We can see this in the edits given in Figure 6

G EXTENDED DISCUSSION AND RESULTS
We provide an extended Figure showing the effectiveness of our
multi-illumination as well as discuss the difficulty of qualitative
evaluation on real-world images and editing tasks. We also provide
in-the-wild comparisons on 100 photographs in the supplementary
zip file.

G.1 Multi-Illumination Training Ablation
In Figure 8 we provide an extended version of Figure 11 in the main
paper. We show the effect that multi-illumination training has on
our pipeline. In the top row, we can see the model fails to predict
consistent shading across the apples, this results in an inconsistent
albedo intensity as shown in the inset. In the bottom row, we can
see that the multi-illumination training helps the model generalize
to content unseen during training, such as humans. The inset shows
that model can make much more accurate shading estimations on
human faces resulting in a more sparse albedo component with
fewer leftover shading effects.
Although the performance difference is apparent qualitatively,

it is difficult to properly evaluate the improvement numerically.
We find that the multi-illumination training allows the model to
generalize to real-world scenes. Evaluating this ablation on the
ARAP dataset does not measure this improvement as the images
are rendered and generally simpler than real scenes. Although real-
world datasets exist, they fail to provide meaningful comparisons
of performance as discussed in Section 8 of the main paper. For
these reasons, we rely on qualitative evaluation to draw conclusions
about the performance improvement gained frommulti-illumination
training.
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