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1 INTRODUCTION
In this supplementary document we provide additional descriptions
of the datasets we used to train our pipeline, implementation details
pertaining to the training and evaluation of our pipeline along with
competing methods, and finally additional qualitative examples
of our results and comparisons to prior intrinsic decomposition
methods.

2 IMPLEMENTATION DETAILS
In this section, we first provide additional information on each
of the datasets we used to train our method. We then detail the
specific training process used for each of our networks, including the
augmentation, data loading, and training time. Finally, we explain
the preprocessing and evaluation process for each dataset used in
our quantitative analysis.

2.1 Datasets
In order to train our pipeline we collect multiple publicly available
datasets. Table 1 provides a tabular overview of some of the aspects
of each dataset.

Hypersim. Hypersim is a rendered dataset consisting of 461 in-
door scenes with approximately 74,000 frames at (1024 x 768) pixel
resolution. The scenes are rendered using V-Ray, and various intrin-
sic components are provided as uncompressed high dynamic range
images. This is the only dataset that provides accurate ground-truth
diffuse shading, therefore we are able to use it to train our final
diffuse shading network.

GTA. The GTA dataset consists of over 200,000 captures from the
video game "Grand Theft Auto 5". The provided images are (600 x
800) pixels andmainly consist of outdoor scenes with roads, vehicles,
buildings, trees, etc. Many of the frames are redundant as they come
from multiple successive captures, typically from a vehicle. For each
RGB frame, a corresponding albedo is provided as an 8-bit PNG.
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Table 1. Summary of the datasets used to train our method

Dataset # of Images Scene Type Resolution
Hypersim [Roberts et al. 2021] 70838 Indoor (1024 x 768)
GTA [Krahenbuhl 2018] 223197 Driving (600 x 800)
Structure3D [Zheng et al. 2020] 78463 Indoor (1280 x 720)
InteriorVerse [Zhu et al. 2022] 52557 Indoor (640 x 480)
EDEN [Le et al. 2021] 368663 Gardens (640 x 480)
Matrix City [Li et al. 2023] 44804 Driving/Aerial (1000 x 1000)/(1920 x 1080)
Lumos [Yeh et al. 2022] 28319 Humans (512 x 512)
PRID [Wang et al. 2022] 21475 Indoor (640 x 480)
MIDIntrinsic [Murmann et al. 2019] 25000 Indoor (1000 x 1500)

Structure3D. The Structure3D dataset consists of approximately
3,300 rendered indoor scenes resulting in 78,000 frames each with
a resolution of (1280 x 720). The frames are rendered using a pro-
prietary ray-tracing engine. Each RGB frame is accompanied by a
corresponding albedo stored as a PNG.

InteriorVerse. The InteriorVerse dataset consists of approximately
4,000 rendered indoor scenes resulting in about 52,000 frames each
with a resolution of (640 x 480). The images and corresponding albe-
dos are provided as HDR images in the EXR format. We tonemap the
images using the simple scheme used by prior works [Careaga et al.
2023; Roberts et al. 2021] without gamma correcting the images to
maintain linearity. The dataset also includes roughness parameters
and lighting information which we do not utilize.

EDEN. The EDEN dataset consists of approximately 368,000 ren-
dered frames depicting procedurally generated garden scenes. The
scenes are rendered using Blender at a resolution of (640 x 480).
The dataset provides images and corresponding albedo, as well as
various shading layers generated by Blender. We find that the diffuse
shading provided is oftentimes noisy and is clipped as the images are
stored as PNGs. For this reason, the data is not suitable for training
our diffuse shading network.

Matrix City. The Matrix City dataset consists of two large-scale
city scenes rendered from many different views using the Unreal
Engine. The authors have released albedo for the smaller of the
two cities, and data consists of both aerial and street-view subsets.
The street-view frames are rendered at a resolution of (1000 x 1000)
while the aerial images are rendered at (1920 x 1080). Overall a total
of approximately 44,000 frames have corresponding albedo ground
truth. The dataset also provides specular and roughness maps which
we do not utilize. Although this dataset is a quality source of outdoor
data, the rendered images generally have the same overcast weather
and therefore lack hard shadows present in real images.

Lumos. The Lumos dataset consists of multiple procedurally gen-
erated human character models captured in a virtual lightstage
setting. Due to data downloading issues, we are only able to use a
subset of the dataset. Specifically, we use 50 of the 500 identities
resulting in approximately 28,300 images at a resolution of (512
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Fig. 1. Extension of Figure 6 in the main paper. Image from Unsplash by Slidebean

x 512). The corresponding albedo for each image is provided as a
JPEG. The authors also provide various other intrinsic components,
including diffuse shading. Since there is not clear description of how
the components combine to reconstruct the image, and they are
stored in a compressed LDR format, we do not use these components
to train our diffuse shading network.

PRID. The "Photo-Realistic Intrinsic Dataset" consists of 21,000
rendered images of indoor scenes. The dataset provides images,
albedo, and masks at a resolution of (640 x 480). The dataset also
provides what appears to be diffuse shading but it is not discussed
exactly what component this is in the datasets description. Addi-
tionally it is stored in a clipped form as PNG files, which makes it
not suitable for training our diffuse shading network.

MIDIntrinsic. The MIDIntrinsic dataset is an augmented version
of the Multi-Illumination Dataset (MID) [Murmann et al. 2019]
proposed by Careaga and Aksoy [2023]. The MID provides 1,000
indoor scenes captured under 25 different illumination conditions
generated using an automated bounce-flash rig. Each illumination
image has a resolution of (1000 x 1500). The MIDIntrinsics dataset
consists of the 1,000 original scenes from MID but with pseudo
ground truth albedo provided using the method of Careaga and
Aksoy [2023]. We use the provided albedo as ground truth to train
all of our networks (except for the diffuse shading network). The

images are white-balanced using the diffuse gray ball therefore each
illumination appears colorless. To create an input image, we sample
1-3 illumination, then shift the color of each illumination by adding
a global offset to the a and b channels in the Lab colorspace. By
linearly combining these images with a randomly sampled set of
alpha values that add up to 1, we end up with a mixed illumination
image that we can use as input to our network. The pseudo ground
truth albedo is computed from the white-balanced images, therefore
we can ensure it represents the underlying color content of the
original scene. There can be baked-in shading colors in the pseudo
ground truth albedo due to effects like inter-reflections that are
not dependent on the main illumination of the scene. We find that
this has little effect on our pipeline’s final performance and does
not outweigh this dataset’s importance as it is the sole real-world
training dataset.

2.2 Training
We train each of our models with similar settings. Each network
has the same architecture and is trained with a batch size of 12.
Each image in the batch is (384 x 384). We generate the training
images by sampling random-sized square crops and resizing them.
We perform horizontal and vertical flipping after generating our
crops. In order to speed up training by decreasing I/O, we cache
images when loading data. The images are cached in RAM at full
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Fig. 2. Examples of each component in our pipeline. Top row: input, albedo from Careaga and Aksoy [2023], albedo generated by chroma network, albedo
generated by the albedo network, specular residual. Bottom row: white-balanced image, shading from Careaga and Aksoy [2023], grayscale shading plus
estimated chroma, shading from our final albedo, and our diffuse shading. Images from Unsplash by Toa Heftiba (top) and Francesca Tosolini.

resolution before any augmentation. When the dataloader is queried
for a new datapoint, either a new datapoint is loaded from disk (and
subsequently cached) or an existing cached datapoint is returned.
The probability of using a cached example is set to 70% to minimize
the large reads that are required to load multiple high-resolution
intrinsic components. Note that the data points are cached pre-
augmentation, therefore even if the same image is returned in a
single batch, it will likely have a completely different augmentation
applied to it. For each batch, we sample data points from all datasets
with a certain probability which is chosen based on dataset size,
diversity, and quality. In all datasets, we use provided masks if they
exist, and mask out additional pixels which have very low albedo
values as these typically correspond to mirror surfaces, glass, or the
sky box.

Ordinal Training. We train the ordinal network starting from
the weights provided by [Careaga and Aksoy 2023]. We use the
same loss formulation and augmentation from the original paper.
We continue training using all of the datasets shown in Table 1 for
approximately 1.25 million iterations.

IID Training. We do not continue training the second network
from [Careaga and Aksoy 2023]. Since the inputs are still ordinal
shading estimations the network does not need to be retrained in
order to work with our updated ordinal shading network.

Chroma Training. We train the shading chromaticity network for
a total of 500 thousand iterations. We use the updated ordinal net-
work weights when generating the gray-scale input decompositions
to ensure that the model generates reasonable decompositions for
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Fig. 3. Another example of the intermediate components in the same order as Figure 2 Image from Unsplash by Susmitha Veganosaurus.

all datasets. When training this network we add a global color shift
augmentation to simulate inaccurate white balance. The color shift
is computed by generating a random RGB vector, normalizing and
multiplying it by the input image. This doesn’t change the albedo
and the shifted shading is computed by dividing the shifted image by
the albedo. In the albedo and diffuse shading stages, we cannot eas-
ily synthesize the input decompositions when performing this color
shift augmentation, therefore we only include this augmentation in
the chromaticity estimation stage.

Albedo Training. The albedo estimation network is trained for
approximately 600 thousand iterations. We use estimations from
the chromaticity network, combined with estimations from the
grayscale shading networks as input to this stage, and precompute
these decompositions for each dataset.

Diffuse Shading Training. We train the diffuse shading network
for approximately 750 thousand iterations. Since the proper diffuse
shading component is not typically provided in rendered datasets,
we only use Hypersim to train this network.

2.3 Evaluation
For the ARAP dataset, we follow Careaga and Aksoy [2023] using
the scenes provided by Bonneel et al. [2017]. We include the scenes
given in the supplementary material as well as the extended set of
scenes provided on their website. We found that many of the scenes
used by Careaga and Aksoy [2023] had duplicate illuminations or
were over-represented in the dataset (5+ illuminations of the same
scene), so we remove these redundant data points. To add more data,

we use some scenes from the MIST Dataset [Hao and Funt 2020] as
it is a small-scale dataset and it is zero-shot for all the methods (not
used for training) To compute the shading for each render we divide
the image by the albedo. This results in a 3-channel colorful shading
component. Additionally, we create a mask that omits pixels with
a very low albedo or shading value, in order to avoid evaluating
methods on pixels with inaccurate values or lost information. For a
given image we run each method using their published code and
default resizing functionality. We evaluate the output decomposition
at the 𝑅0 resolution following Careaga and Aksoy [2023]. We use
a window size of 20 when computing the LMSE metric. For the
MAW dataset, we use the public code provided by the authors. For
each method, we use the default resizing logic provided and output
the albedo to disk. The MAW dataset code handles resizing and
computing metrics, we follow the authors scaling when reporting
metrics to match the original paper. Since the images are evaluated
at a low resolution, we run our method at a resolution of 512 pixels,
this does not significantly affect the scores of our method. We use
all datasets when training the method of Careaga and Aksoy [2023],
the chromaticity estimation network, and the albedo estimation
network. We use only the Hypersim dataset when training the
diffuse shading network.

3 QUALITATIVE EXAMPLES
In Figure 1 we show an extension of Figure 6 in the main paper. In
this example, we can see that the gray-scale methods of Careaga and
Aksoy [2023]; Das et al. [2022]; Luo et al. [2020] and Liu et al. [2020]
all leave residual lighting effects in the albedo on the ceiling and
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Fig. 4. Our pipeline is able to iteratively correct small errors in at each stage. In this example, our pipeline first corrects the colors on the folds of the clothing
when estimating shading chromaticity. Then the albedo estimation network is able to remove small errors from the original decomposition by estimating a
smooth albedo layer. Images from Unsplash by Austin Wade.

on the floor. In this example, it is obvious that our single-network
baseline significantly shifts the colors of the scene which can be seen
on the floor and on the blue wall. On the other hand, our method
is able to estimate sparse and accurate albedo due to our careful
modeling of the lighting chromaticity in the scene.
In Figures 2 and 3 we show each component of our pipeline for

3 different scenes. The top row of each example shows the input
image, and three different albedo components (from left to right):
the albedo from Careaga and Aksoy [2023] (𝑆𝑔), our low-res chroma
albedo (𝑆𝑐 ) and our final diffuse albedo (𝑆𝑑 ). The final image in the
top row is the specular residual. The bottom row shows our white-
balanced version of the image, the corresponding shading layers
from each albedo layer, and finally the diffuse shading layer.
In the first example, we can see how our method is able to cor-

rectly represent the inter-reflections from wood beams reflecting
onto the ceiling. Additionally, many of the surfaces in the image are
slightly specular, our method is able to get the subtle color shift off
of the wooden desk and correctly assigns it to the specular residual
layer. It is important to note that these colorful lighting effects are
incorrectly represented when assigned to the multiplicative shading
layer, resulting in odd color shifting (e.g. the slight blue tint on wood
surfaces). These color shifts are removed from our diffuse shading
as they are correctly placed into the additive specular layer where
they belong.

In the second example, we can see that there is a deep blue color
behind the furniture from the wall and floor. Our model is able to
capture this color shift in the shading layer making the albedo much
more uniform. Our method also captures the color specularity on
the floor and on the door, first assigning it to the shading layer, then
properly representing it in the additive residual layer. The residual
layer is also sparse without additional lighting effects.

In the final example, we can see that the plant albedo looks very
non-uniform in the decomposition from Careaga and Aksoy [2023].
This is caused by two different lighting effects; the slight specularity
from the sun shining on the top of the leaves, as well as the inter-
reflections between the leaves creating a deeper green in parts of the

plant. We can see that our chroma network correctly estimates the
color shift of both effects, assigning them to our initial shading layer.
Our albedo network then further smooths the reflectance across the
plant and we can see both purple and green lighting effects in the
shading layer. Finally, our diffuse shading network correctly assigns
the specular light on the top of the leaves to the residual and leaves
the diffuse inter-reflections below the leaves.

Although our pipeline relies on an accurate decomposition from
the method of Careaga and Aksoy [2023], our multi-stage pipeline
is still able to correct small errors in the original decomposition. An
example of this behavior is shown in Figure 4. Ourmodel first adjusts
the shading chromaticity to remove color from inter-reflections
on the clothing. Our albedo estimation network is then able to
recognize residual shading effects left in the albedo, correcting them
by estimating a sparse albedo layer.
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