Colorful Diffuse Intrinsic Image Decomposition in the Wild

Chris Careaga Yağız Aksoy
ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 2024
Best Paper Award Honorable Mention
Patent pending
Colorful Diffuse Intrinsic Image Decomposition in the Wild

We present a method that can represent in-the-wild photographs in terms of albedo, diffuse shading, and non-diffuse residual components. Our shading layer reflects the colorful nature of multiple illuminants and secondary reflections in the scene, while our residual layer models the specularities and visible light sources.

Abstract

Intrinsic image decomposition aims to separate the surface reflectance and the effects from the illumination given a single photograph. Due to the complexity of the problem, most prior works assume a single-color illumination and a Lambertian world, which limits their use in illumination-aware image editing applications. In this work, we separate an input image into its diffuse albedo, colorful diffuse shading, and specular residual components. We arrive at our result by gradually removing first the single-color illumination and then the Lambertian-world assumptions. We show that by dividing the problem into easier sub-problems, in-the-wild colorful diffuse shading estimation can be achieved despite the limited ground-truth datasets. Our extended intrinsic model enables illumination-aware analysis of photographs and can be used for image editing applications such as specularity removal and per-pixel white balancing.

Implementation

GitHub Repository

Paper

BibTeX

@ARTICLE{careagaColorful,
author={Chris Careaga and Ya\u{g}{\i}z Aksoy},
title={Colorful Diffuse Intrinsic Image Decomposition in the Wild},
journal={ACM Trans. Graph.},
year={2024},
volume = {43},
number = {6},
articleno = {178},
numpages = {12},
}

License

The methodology presented in this work is safeguarded under intellectual property protection. For inquiries regarding licensing opportunities, kindly reach out to SFU Technology Licensing Office <tlo_dir ατ sfu δøτ ca> and Dr. Yağız Aksoy <yagiz ατ sfu δøτ ca>.

Chris receiving his award at SIGGRAPH Asia 2024

Related Publications


Chris Careaga and Yağız Aksoy
Proc. SIGGRAPH, 2025
We present a self-supervised approach to in-the-wild image relighting that enables fully controllable, physically based illumination editing. We achieve this by combining the physical accuracy of traditional rendering with the photorealistic appearance made possible by neural rendering. Our pipeline works by inferring a colored mesh representation of a given scene using monocular estimates of geometry and intrinsic components. This representation allows users to define their desired illumination configuration in 3D. The scene under the new lighting can then be rendered using a path-tracing engine. We send this approximate rendering of the scene through a feed-forward neural renderer to predict the final photorealistic relighting result. We develop a differentiable rendering process to reconstruct in-the-wild scene illumination, enabling self-supervised training of our neural renderer on raw image collections. Our method represents a significant step in bringing the explicit physical control over lights available in typical 3D computer graphics tools, such as Blender, to in-the-wild relighting.
@INPROCEEDINGS{careagaRelighting,
author={Chris Careaga and Ya\u{g}{\i}z Aksoy},
title={Physically Controllable Relighting of Photographs},
booktitle={Proc. SIGGRAPH},
year={2025},
}

Chris Careaga and Yağız Aksoy
ACM Transactions on Graphics, 2023
Intrinsic decomposition is a fundamental mid-level vision problem that plays a crucial role in various inverse rendering and computational photography pipelines. Generating highly accurate intrinsic decompositions is an inherently under-constrained task that requires precisely estimating continuous-valued shading and albedo. In this work, we achieve high-resolution intrinsic decomposition by breaking the problem into two parts. First, we present a dense ordinal shading formulation using a shift- and scale-invariant loss in order to estimate ordinal shading cues without restricting the predictions to obey the intrinsic model. We then combine low- and high-resolution ordinal estimations using a second network to generate a shading estimate with both global coherency and local details. We encourage the model to learn an accurate decomposition by computing losses on the estimated shading as well as the albedo implied by the intrinsic model. We develop a straightforward method for generating dense pseudo ground truth using our models predictions and multi-illumination data, enabling generalization to in-the-wild imagery. We present exhaustive qualitative and quantitative analysis of our predicted intrinsic components against state-of-the-art methods. Finally, we demonstrate the real-world applicability of our estimations by performing otherwise difficult editing tasks such as recoloring and relighting.
@ARTICLE{careagaIntrinsic,
author={Chris Careaga and Ya\u{g}{\i}z Aksoy},
title={Intrinsic Image Decomposition via Ordinal Shading},
journal={ACM Trans. Graph.},
year={2023},
volume = {43},
number = {1},
articleno = {12},
numpages = {24},
}